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Abstract The southeastern margin of the Tibetan Plateau is a crucial region to understand the mechanisms of plateau uplift and
deformation. This region is seismically active and has experienced multiple large earthquakes, resulting in significant human and
economic losses. Constructing velocity and anisotropic tomography models is crucial for understanding the seismogenic me-
chanism and deep structural deformation in this area. In this study, we extract high-quality P-wave first-arrival data from the
earthquake catalog of the China Earthquake Administration and use them to construct both common-receiver and common-
source differential traveltime datasets. We then apply a novel adjoint-state traveltime tomography approach to obtain new P-
wave velocity and azimuthal anisotropy models for the region. This method eliminates the need for ray tracing, thereby reducing
the potential bias from the ray theory and ray tracing. A comparison between our results and previous imaging models and shear-
wave splitting measurements reveals several new details. The results indicate weak anisotropy in the shallow depth of the central
Chuandian block. Two low-velocity anomalies are identified beneath the Songpan-Ganzi and Lijiang-Xiaojinhe fault zones, as
well as beneath the Xiaojiang Fault. The distinct anisotropic characteristics of these two low-velocity anomalies suggest different
tectonic contexts: Beneath the Songpan-Ganzi and Lijiang-Xiaojinhe fault zones, the azimuthal anisotropy aligns north-south
and northeast-southwest, while beneath the Xiaojiang Fault, it aligns northwest-southeast. In addition, the anisotropy of the
upper mantle in the southern part of the study area has a significant east-west feature. The earthquake relocation results reveal
intensified seismic activity in regions with significant velocity contrasts and near fault zones. Segmental seismic activity is
observed along some major fault zones, and seismicity is also more pronounced in fault intersection areas. The new imaging
results provide new perspectives and insights for understanding the seismogenic mechanisms and regional tectonic deformation
in the region.
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1. Introduction

The Tibetan Plateau has undergone intense compressional

folding and significant crustal shortening due to the collision
between the Indian and Eurasian plates over the past 50 Ma
(e.g., Molnar and Tapponnier, 1975; Yin and Harrison, 2000;
Tapponnier et al., 2001; Kind et al., 2002; Royden et al.,
2008; Burchfiel and Chen, 2013; Ding et al., 2022). This
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geological evolution has resulted in a surface uplift of over
4 km and crustal thickening to about 80 km (Schoenbohm et
al., 2006; Royden et al., 2008; Wang C et al., 2014). Previous
studies have proposed various models to explain the me-
chanism of the large-scale uplift and geodynamic process of
the Tibetan Plateau, including the rigid block extrusion
model (Molnar and Tapponnier, 1975; Peltzer and Tappon-
nier, 1988; Tapponnier et al., 1982, 2001), continuous de-
formation model (England and Houseman, 1986, 1988), and
mid-lower crustal flow model (e.g., Royden et al., 1997,
2008; Clark and Royden, 2000; Beaumont et al., 2001;
Copley and McKenzie, 2007). Nevertheless, increasing
geophysical evidence suggests that widespread crustal flow
may not exist within the Tibetan Plateau, but may be con-
fined to localized regions (e.g., Bai et al., 2010). The rigid
block extrusion model also inadequately explains the internal
movement of the blocks. Thus, there remains ongoing debate
regarding the mechanisms and geodynamic processes for the
uplift of the Tibetan Plateau.
The southeastern margin of the Tibetan Plateau serves as a

critical window for understanding the uplift mechanisms as
the materials from the Tibetan Plateau have escaped and
extruded in the southeast direction (Figure 1; Tapponnier et
al., 2001; Burchfiel and Chen, 2013; Wang et al., 2015;
Huang et al., 2021; Hou et al., 2024). Surface GPS mea-
surements show a clockwise movement of materials around
the eastern structural segment of the Tibetan Plateau (Figure

1b; Shen et al., 2005; Rui and Stamps, 2019; Wang and Shen,
2020). The southeastern margin comprises several blocks
(Figure 1), including the rigid Sichuan Basin (SCB), Song-
pan-Ganzi Terrain (SGT), Yangtze Craton (YZC), Chuan-
Dian rhombic block (CDT), Cathaysia Fold Belt (CFB), and
Indo-China Block (ICB). The region is characterized by a
few main active faults (Figure 1; Deng et al., 2003; Zhang,
2013), such as the Longmenshan Fault (LMSF), the Xian-
shuihe Fault (XSHF), the Xiaojiang Fault (XJF), and the Red
Revier Fault (RRF). The Emeishan large igneous province
(ELIP) is located in the central part of CDT, inferred to have
formed approximately 250 Ma during the Late Permian
mantle plume eruption (Xu et al., 2004, 2007; Ali et al.,
2005; Shellnutt, 2014). The interactions between these
blocks and fault systems contribute to the complex crustal
deformation mechanisms in this region. The southeastern
margin of the Tibetan Plateau is one of the most seismically
active regions in the world, having experienced numerous
earthquakes with magnitudes greater than 6 (e.g. the 2008MS

8.0 Wenchuan earthquake and the 2013 MS 7.0 Lushan
earthquake), resulting in significant human and economic
losses. Therefore, tomographic studies of the velocity and
anisotropic structure of this region are crucial for under-
standing the ground motions, seismic mechanisms, and
earthquake prevention and disaster reduction.
Seismic velocity structure provides constraints about the

composition, temperature, partial melting of the earth med-

Figure 1 Tectonic map and geodetic displacement and strain of the study region. (a) Tectonic unit and main active faults (modified from Deng et al., 2003;
Liang et al., 2004; Zhang, 2013; Xin et al., 2019) with the distribution of the earthquakes (blue dots) and stations (red triangles) used in the study. (b) Surface
GPS displacement measurements (from Wang and Shen, 2020) and the maximum shear strain rate (from Rui and Stamps, 2019). The study region is
highlighted in red zone on the global map in the lower right corner. CDT, Chuandian Terrain; CFB, Cathaysia Fold Belt; ELIP, Emeishan large igneous
province; ICB, Indo-China Block; SCB, Sichuan Basin; SGT, Songpan-Ganzi Terrain; YZC, Yangtze Craton. ANF, Anninghe Fault; DLSF, Daliangshan
Fault; LCJF, Lancangjiang Fault; LMSF, Longmengshan Fault; LXJF, Lijiang-Xiaojinhe Fault; LZF, Lüzhijiang Fault; NJF, Nujiang Fault; MJF, Minjiang
Fault; RRF, Red River Fault; XJF, Xiaojiang Fault; XSHF, Xianshuihe Fault; ZMF, Zemuhe Fault.
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ium (Boyd et al., 2004). Seismic anisotropic structure may
imply existing fractures, subsurface material movement, and
potential stress-strain fields (e.g., Crampin et al., 1984;
Weiss et al., 1999; Boness and Zoback, 2006; Fouch and
Rondenay, 2006; Zhao et al., 2016; Huang et al., 2018).
Despite ongoing controversy about the causes of anisotropy,
the two main candidates are currently the shape-preferred
orientation (SPO) and lattice-preferred orientation (LPO) of
the Earth’s medium (e.g., Crampin et al., 1984; Weiss et al.,
1999; Montagner and Guillot, 2002; Wenk, 2002; Fouch and
Rondenay, 2006). In 2018, China Seismic Experimental Site
(CSES) was established in the southeastern margin of the
Tibetan Plateau (Wu and Li, 2021). In the past few decades,
numerous studies have developed various velocity and ani-
sotropic models about this region. Many isotropic velocity
models have been obtained from surface wave tomography
from ambient noise or earthquake (e.g., Yao et al., 2006,
2008; Yang et al., 2012; Qiao et al., 2018; Li L et al., 2021),
body wave traveltime tomography (e.g., Huang et al., 2003,
2012; Huang et al., 2015; Hua et al., 2018; Wei and Zhao,
2022; Hu et al., 2024; Wu et al., 2024) , full waveform
inversion (e.g., Chen et al., 2015; Dong et al., 2019; Xiao et
al., 2020), and joint inversion of different data (e.g., Liu et
al., 2014; Bao et al., 2015; Feng et al., 2020; Liu Y et al.,
2021, 2023; Hou et al., 2024). Anisotropic measurements
beneath the stations at the southeast Tibetan Plateau have
been derived from local earthquakes shear-wave splitting
(e.g., Shi et al., 2012, 2013; Zhang and Gao, 2017; Zhang et
al., 2018; Gao et al., 2020), teleseismic SKS, SKKS, PKS
splitting (e.g., Sol et al., 2007; Shi et al., 2012; Chang et al.,
2015; Kong et al., 2018; Huang and Chevrot, 2021), and
receiver function (e.g., Hu et al., 2018; Zheng et al., 2018;
Han et al., 2020; Peng et al., 2022). Furthermore, many
studies have developed the three-dimensional anisotropic
models from Rayleigh wave anisotropic tomography (e.g.,
Yao et al., 2010; Liu et al., 2019; Bao et al., 2020; Cao et al.,
2020; Liang et al., 2020; Dong and Yang, 2022; Han et al.,
2022; Zhang Z et al., 2023), P-wave anisotropic tomography
(e.g., Wei et al., 2013; Huang et al., 2018; Liu et al., 2022),
and Pn-wave anisotropic tomography (e.g., Liang and Song,
2006; Lü et al., 2011; Lei et al., 2014; Du et al., 2019; Nie et
al., 2021).
Presently, most of the traveltime tomography for velocity

and anisotropic structure is based on ray tracing (e.g., Zhang
and Thurber, 2003, 2006; Huang et al., 2018; Han et al.,
2021; Liu et al., 2023). However, the accurate determination
of the ray paths within the highly heterogeneous anisotropic
structures is challenging (Rawlinson et al., 2008; Liu and
Tong, 2021; Tong, 2021a). To avoid potential errors asso-
ciated with ray tracing and to utilize the prevalent adjoint
method, Tong (2021a, 2021b) developed a novel traveltime
inversion method for velocity and azimuthal anisotropic
structure based on the eikonal equation. This method elim-

inates the need for ray tracing to update the model. Instead,
it employs the adjoint method to compute sensitivity kernels
for model update. In this study, we select the first arrival
time data from the catalog of the China Earthquake Ad-
ministration. By applying the new traveltime tomography,
we obtain the new P-wave velocity and azimuthal aniso-
tropic models for the southeastern margin of the Tibetan
Plateau. Our finding provides the new perspectives and
understanding of the deformation and seismogenic me-
chanisms of the crust and upper mantle in the southeast
Tibetan Plateau.

2. Data

We apply strict selection criteria to the earthquake catalog
from 2008 to 2022 achieved in the China Earthquake Ad-
ministration. Specifically, we initially perform the regression
analysis on the raw traveltime dataset. Then, we delete ar-
rival times far away from the main trend (greater than 2.75 s)
in the raw dataset, and discard earthquakes with less than 7
records. Consequently, we obtain 38,661 events and 498,848
P-wave arrival time data (Figure 1a; Figure 2a, 2b; Appendix
Figure S1, https://link.springer.com), referred to as absolute
traveltime (ABS) data. Furthermore, about 5,635,364 com-
mon-receiver differential traveltime (CR) data are extracted
by limiting the maximum separation of earthquake pairs to
10 km, and 649,754 common-source differential traveltime
(CS) data are extracted based on the common-source ray
azimuth angle less than 30°.

3. Methodology

We adopt the novel Adjoint-state traveltime tomography
(referred as “TomoATT”; Tong, 2021a, 2021b) to obtain the
crustal P-wave velocity and the azimuthal anisotropic
structure using absolute and differential traveltime data. The
comprehensive description of the method is presented in
Tong (2021a, 2021b), Tong et al. (2023), and Chen et al.
(2023a). TomoATT has several advantages, including re-
liance on the eikonal equation without ray tracing, in-
corporation of surface topography, consideration of Earth’s
curvature, partial resolution of multipath issues, and efficient
and accurate computation of the traveltime field. The fol-
lowing provides a concise overview of the method and the
inversion workflow in this study.

3.1 Adjoint-state traveltime tomography for azimuthal
anisotropic media

The traveltime field T x( ) of the wavefront in an azimuthal
anisotropic medium is governed by the eikonal equation with
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where Tn m,
obs is the observed traveltime originating from the

n-th source at x r m, and recorded by the m-th receiver at x r m, .
Correspondingly, T x( )n r m

pred
, is the synthetic traveltime

governed by eq. (1). And thew w w, ,n m n mk nj m, , , are the weights
of data depending on the quality and the density of traveltime
data.
TomoATT employs adjoint method to determinate the

sensitive kernels of traveltime data misfit with respect to the
model parameters (see Figure 3 for an example of the in-
dividual sensitive kernels with respect to the slowness of the
ABS, CS, and CR data, separately). After obtaining the
sensitivity kernels, TomoATT employs the step-size con-
trolled gradient descent method to simultaneously update the
P-wave velocity and azimuthal anisotropic models in an
iterative manner (Chen et al., 2023a, 2023b). The multiple-
grid model parameterization (Tong et al., 2019; Tong, 2021a)
is applied to mitigate the influence of subjective inversion
grid selection, enhancing the robustness of inversion. Con-
sidering the uneven distribution of data, TomoATT performs

Figure 2 Distribution of data coverage, traveltime-distance scatter plot, and one-dimensional average VP model. (a) Spatial distribution and density of the
great circle paths associated with traveltime data. (b) Traveltime-distance scatter plot of the selected data used in the inversion. (c) Results of the one-
dimensional VP model inversion along with the summary table of average (AVG, in s) and standard deviation (STD, in s) of residuals before and after
inversion. Black line indicates the 1D average model of USTClitho2.0 (Han et al., 2021) in our study region.
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appropriate normalization according to the density of sen-
sitive kernels. Additionally, TomoATT also possesses the
capability to relocate earthquakes during the iteration (Tong
et al., 2023) like the practice of many tomography studies
(e.g., Zhang and Thurber, 2003, 2006 Han et al., 2021; Liu et
al., 2023). It is noteworthy that the earthquakes relocation
also considers the influence of anisotropy, improving for-
ward modeling and therefore location accuracy.

3.2 Inversion strategy and model parameterization

Three types of data constrain model and earthquake location
with different emphasis. ABS data is sensitive to the absolute
seismic velocity and earthquake location (Figure 3b). CS
data emphasizes the receiver-side structure, and reduces the
effect of source uncertainty (including the uncertainty of
hypocenter location and origin time) on model inversion
(Figure 3c; e.g., Yuan et al., 2016; Chen et al., 2023; Tong et
al., 2023). CR data, by reducing the uncertainty of receiver-
side structures (Figure 3d), has been proven effective for
earthquake relocation (e.g., Waldhauser and Ellsworth, 2000;
Zhang and Thurber, 2003; Allam and Ben-Zion, 2012; Tong
et al., 2023). Therefore, in this study, ABS and CS data are
used for the inversion of VP velocity and azimuthal aniso-
tropy structure, while earthquake relocation incorporates
ABS and CR data.
The inversion process is divided into two stages. First, we

perform a one-dimensional (1D) velocity inversion based on
the ABS data. It starts with a 1D model of the horizonal
average of the USTCL2.0 model within the study region
(Figure 2c, black curve). The resulting final 1D model
(Figure 2c, red dashed lines) serves as the initial model for
the subsequent 3D inversion of the isotropic velocity model
and the azimuthal anisotropy model and reference model in
the checkerboard resolution tests. We then perform two
parallel 3D model inversions: one that inverts only the iso-
tropic P-wave velocity and another that simultaneously in-
verts both the anisotropic P-wave velocity and the azimuthal
anisotropy. The initial iterations of the inversion are per-
formed on a coarse grid, followed by further iterations on a
finer grid. The grid configurations are shown in supple-
mentary Figures S2 and S3.

4. 1D velocity inversion and checkerboard re-
solution tests

4.1 1D model

The 1D velocity model inversion reduces the initial residual
mean of the ABS data from approximately 0.156 s to about
0 s (Figure 2c), indicating the 1D model is not under-
estimated and overestimated. The STD of residuals decreases
from 0.942 to 0.876 s (Figure 2c). As the initial model for the

subsequent 3D inversion, it effectively eliminates systematic
biases from the data. The 1D velocity model shows overall
similar trends with the 1D average model of the UST-
Clitho2.0 (Han et al., 2021) in our study region (Figure 2c).
However, there is noticeable decrease in the velocity gradient
near 20 km depth, followed by a significant increase in the
velocity gradient near 50 km depth. At about 80 km depth,
our 1D velocity model is slightly higher than that of the
USTClitho2.0.

4.2 Assessment of resolution capability

The checkerboard resolution test provides a reference for the
resolution of the tomography model and is commonly em-
ployed, although it may have certain limitations (Lévěque et
al., 1993; Liang et al., 2004; Rawlinson and Spakman, 2016).
Refer to Zelt (1998), Liang et al. (2004) and Huang et al.
(2015), we define two indicators to quantify the resolutions
of velocity and anisotropy in the checkerboard test.
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where c( , , ) are recovered velocity and azimuthal aniso-
tropy parameters, and c( , , )T T T are true model parameters.
In this test, we select h=1°. Empirically, we regard the areas
where R>0.7 as well-recover domain in the checkerboard
test (Zelt, 1998; Liang et al., 2004).

4.3 Resolution test of isotropic VP model inversion

We perform a checkerboard resolution test to evaluate the
inversion of the isotropic velocity model. We assign stag-
gered ±5% velocity perturbations to the 1D output model
(Figure 2c, red dashed lines), constructing the checkerboard
model. In the depth range of 0–20 km, the size of velocity
anomalies in depth and lateral direction is approximately
10 km×0.7°×0.7°. In the depth range of 20–30 km, the
anomaly size is about 10 km×0.9°×0.9°. At the depth of
30–45 km, the anomaly size is about 15 km×1.1°×1.1°, and
at greater depths, the anomaly size is around 20 km
×1.5°×1.5° (Figure S4). The configuration of dataset is
consistent with that of real-data inversion. To simulate the
noise of the real data, we add Gaussian noise with a mean of
0 s and a standard deviation of 0.1 s to the ABS data. Si-
milarly, the CS and CR data are constructed using the same
approach applied to process the real data.
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The results of the resolution test suggest that the isotropic
inversion show relatively high resolution in regions with
good data coverage (Figure 4; Figure S5). The standard de-
viation (STD) of the data residuals after inversion is close to
the STD of the noise (Figure 4f). In both shallow and deep
depths (5, 15, 37, and 55 km), the checkerboard model can be
well recovered in most areas within our study region. At
25 km depth, the recovery of the checkerboard model is less
effective in the northwestern and southeastern parts of the
study region, possibly due to the limited rays of the first-
arriving P-wave data (Xu and Song, 2010).

4.4 Resolution test of azimuthal anisotropic model in-
version

We introduced staggered ±5% velocity perturbations and 5%
anisotropy magnitude perturbations with two fast velocity
directions (60° and 150°) to the 1D inversion model to
construct the checkerboard model for azimuthal anisotropy
inversion. The noise in ABS data and construction of the CS
and CR data are the same as those used in isotropic check-
erboard resolution test. Considering the increased inversion

parameters in the anisotropic inversion, the size of velocity
anomalies in the checkerboard model is slightly larger than
that in the isotropic checkerboard model. Moreover, the size
of the azimuthal anisotropy anomalies is slightly larger than
the velocity anomalies. At depths of 0–20 km, the size of
velocity anomalies in the depth and lateral directions is ap-
proximately 10 km×1°×1°, while the size of anisotropic
anomalies is 10 km×1.5°×1.5°. At depths of 20–40 km, the
size of velocity anomalies is about 20 km×1.2°×1.2°, and the
size of anisotropic anomalies is 20 km×1.6°×1.6°. At deeper
depths, the size of velocity anomalies is about 20 km
×1.5°×1.5°, and the size of anisotropic anomalies is about
20 km×1.7°×1.7° (Figure S6; Figure 6). From the inversion
results (Figure 5; Figure 6), it can be observed that azimuthal
anisotropy and seismic velocity in the central part of the
study area can be effectively recovered. The STD of the
residuals after inversion is also close to the STD of the noise
level (Figure 5e). In addition, we perform a leakage test to
assess the degree of coupling between the velocity structure
and the azimuthal anisotropy. Using the same parameter
settings as in the previous inversion, we design a checker-
board model with only velocity anomalies, excluding ani-

Figure 3 The sensitivity kernels of three types of traveltime data. (a) An example velocity model used to compute sensitivity kernels with respect to the
traveltime misfit. (b)–(d) are sensitivity kernels between the sources and receivers of ABS data, CS data, and CR data, respectively. The solid curves in (b)
and (c) are traveltime isochrones at an interval of 5 s.
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sotropy, and then invert for both velocity and anisotropy
structures simultaneously. The results show that the aniso-
tropy structure is scarcely recovered (see Figure S7), in-
dicating that the data used in this study can effectively
decouple velocity and anisotropy. Therefore, the tomo-
graphic model presented in this study is relatively reliable.

5. Tomographic results

5.1 Isotropic VP structure

Our isotropic velocity inversion effectively reduces the STD
of data residuals (Figure 7a–7c). The STD of ABS data re-
siduals decrease from 0.88 s to about 0.49 s, with a reduction
of approximately 44%. Similarly, the STD of the CR data
residuals decrease from 0.73 s to about 0.40 s, approximately
a 45% decrease. The STD of CS data residuals decrease from
1.06 to 0.73 s, a reduction of about 31%. This significant
decreases in residuals STD suggest a substantial improve-
ment in data fit.
We present the perturbation maps of tomographic models

relative to average velocity at given depths (Figure 8), and
the maps of the absolute velocity of tomographic models are

shown in Figure S9. The earthquake relocation results are
shown in Figure S10. Our findings reveal significant low-
velocity anomalies beneath the SCB in the shallow depth
(5 km, Figure 8), likely associated with the extensive sedi-
mentary layers in the area (Liu S et al., 2021; Wang et al.,
2021; Xia et al., 2021). In particular, at a depth of 15 km
(Figure 8), a low velocity anomaly appears on the periphery
of the CDT, mainly beneath the LXJF and XJF. In contrast, a
pronounced high-velocity anomaly is observed in the central
part of the CDT, extending northeastward beneath the SCB.
At a depth of 25 km, this high-velocity anomaly appears to
be surrounded by low-velocity bodies. At depths of 37 and
55 km (Figure 8), the velocity features in the model are re-
latively simple, with the distribution of high- and low-ve-
locity anomalies within the CDT largely corresponding to
Moho depth variations (Dong et al., 2020; Cheng et al.,
2022).

5.2 Azimuthal anisotropic structure

The azimuthal anisotropic inversion results in a more re-
duction in data residuals compared to isotropic inversion due
to the additional inversion parameters for anisotropic mod-

Figure 4 Results of the isotropic checkerboard resolution test at five depths. (a)–(e) Show the results at five depths, respectively. (f) Summary table
showing the STD of the traveltime residuals for the three types of data before and after inversion. The region within the black dashed lines is regarded to be
well-resolved (R x( ) > 0.7vel

) (Figure S5). The blue and red contours indicate the locations of the high- and low-velocity perturbations in the checkerboard
model, respectively.

708 Zhang X, et al. Sci China Earth Sci March (2025) Vol.68 No.3



eling. The STD of residuals for ABS, CS, and CR data de-
creases by approximately 47%, 45%, and 33%, respectively
(Figure 7d–7f). Figure 9 shows the anisotropic velocity and
azimuthal anisotropic structure in the well-resolution region,
determined by the intersection of the regions with well-re-
covered velocity and azimuthal anisotropy from the check-
erboard resolution test (Figures 5 and 6). The earthquake
relocation results are shown in Figure S11.
From the perspective of anisotropic VP velocity structure

(Figure 9), at shallow depths (5 km, Figure 9a), the aniso-
tropic velocity structure closely resembles to the isotropic
results. Both exhibit low-velocity anomalies beneath the
SCB and the eastern margin of the Tibetan Plateau, while the
southern part of the study area shows relatively high velo-
cities. At 15 km depth (Figure 9b), there are low-velocity
anomalies in the SGT, LXJF, and the western part of YZC.
By a depth of 30 km (Figure 9c), prominent low-velocity
anomalies are observed beneath SGT, LXJF, and XJF, while
high-velocity anomalies are primarily located beneath the
SCB and the southern side of RRF. The central part of the
CDT exhibits less distinct high-velocity features. At 50 km
depth (Figure 9d), the patterns of high and low velocities

show a good agreement with the variation of Moho depth
(Cheng et al., 2022).
From the perspective of azimuthal anisotropy structure

(Figure 9), at shallow depths (5 and 15 km; Figure 9a, 9b),
the fast-velocity direction (FVD) is predominantly aligned
with the surface GPS and the strike of active faults. In the
SGT region, the FVDs have a northwest-southeast orienta-
tion. Near LXJF, there is a certain angle between the FVDs
and the strike of LXJF. At RRF and LCJF, the FVDs are well-
aligned with the fault orientation. Similarly, at XJF and LZF,
the FVDs also show good consistency with the strike-slip
faults. However, in the central part of CDT, there is a weak
azimuthal anisotropy feature, consistent with the findings of
Li et al. (2020) and Han et al. (2022). At a depth of 30 km
(Figure 9c), the overall FVDs are generally consistent with
the surface GPS directions. Between SGT and ICB, the
FVDs shift from northwest-southeast to north-south, and
then transition to northeast-southwest, indicating a pro-
nounced clockwise trend. The low-velocity anomaly beneath
the LXJF has a north-south or northeast-southwest FVD,
whereas the low-velocity anomaly beneath the XJF has a
northwest-southeast FVD. These two regions have almost

Figure 5 VP results of the checkerboard resolution test for the P-wave azimuthal anisotropy. (a)–(d) Show the results at four depths, respectively. (e)
Summary table showing the STD of the traveltime residuals for the three types of data before and after inversion. The region within the black dashed lines is
regarded to be well-resolved (R x( ) > 0.7vel

) (Figure S8a–S8d). The blue and red contours indicate the locations of the high- and low-velocity perturbations in
the checkerboard model, respectively.
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perpendicular anisotropy directions. The differences in ani-
sotropic structure suggest that these areas may be within
different tectonic settings. At a depth of 50 km (Figure 9d), a
prominent feature is that, south of 26°N, the overall FVDs
tend to be east-west, while the FVDs in SGTand CDT tend to
be north-south.

6. Discussions

6.1 Model comparison with previous studies

We compare our isotropic P-wave velocity model with the
community velocity model in southwestern China (CVM2.0;
Liu et al., 2023) and the recently developed velocity model
of the lithospheric continental of China (USTClitho2.0; Han
et al., 2021). Both CVM2.0 and USTClitho2.0 are developed
using ray tracing methods and considering the topography of
the Earth. The 1D average velocity in our model is similar to
the CVM2.0 at depth of 5–25 km (Figure 7g). However, at
deeper depths, our model shows slower velocities compared
to both CVM2.0 and USTClitho2.0. Following Zhang et al.
(2022, 2023), we calculate the correlation coefficient be-

tween the perturbation patterns of our model and those of
CVM2.0/USTClitho2.0. At the depths of 5 and 15 km
(Figure 7h), the correlation coefficients between the models
are relatively low. The previous tomographic model com-
parison studies (Zhang X et al., 2022, 2023; Huang et al.,
2024) also observe the significant differences at the shallow
depths, attributed to the complexity of shallow structures and
variations in parameter settings during the inversion. The
overall structure of our model is generally consistent with the
CVM2.0 and USTClitho2.0 models, showing a low velocity
anomaly beneath the SCB at 5 km depth, extensive low ve-
locity anomalies at 15 and 25 km depth, and distinct high and
low velocity patterns at 37 and 55 km depth (Figures 8 and
S9). However, differences are observed in the distribution of
low-velocity anomalies beneath the LXJF and the XJF at
25 km depth. Our model suggests that the low-velocity re-
gions in these areas are continuous, in close agreement with
the results of Hu et al. (2024), whereas the CVM2.0 and
USTClitho2.0 models suggest that these low-velocity
anomalies are separated. These model discrepancies are
likely due to several factors. Both our study and Hu (2024)
rely solely on P-wave arrival data, whereas CVM2.0 and

Figure 6 Azimuthally anisotropic results of the checkerboard resolution test for the P-wave azimuthal anisotropy and the checkerboard model. (a)–(d)
Show the results at four depths, respectively. (e)–(h) Show the checkerboard model at the same four depths, respectively. The region within the black dashed
lines is regarded to be well-resolved (R x( ) > 0.7azi

) (Figure S8e–S8h). The color indicates the magnitude of anisotropy.
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Figure 8 Map views at five depths of the resulted isotropic VP perturbation model, CVM2.0 and USTClitho2.0. The perturbation is relative to the average
velocity at the given depth. We present the model only in the regions where R x( ) > 0.7vel

at the given depth (as indicated by the dashed lines in Figure 4). The
absolute P-wave velocity models are shown in Figure S9. The abbreviations of the tectonic blocks and faults are the same as in Figure 1.

Figure 9 Map views at four depths of 3D P-wave velocity and azimuthal anisotropy model. (a)–(d) Show the P-wave velocity perturbation model and the
azimuthal anisotropy at different depths with the relocated earthquakes (white dots). The azimuthal anisotropy is represented by black bars The perturbation is
relative to the average velocity (labeled in the map) at the given depth. We present the model only in the intersection regions where the R vel

and Razi
are both

greater than 0.7 (as indicated by the dashed lines in Figures 5 and 6). The abbreviations of the tectonic blocks and faults are the same as in Figure 1.
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USTClitho2.0 integrate body wave arrival and surface wave
dispersion data in a joint inversion. In addition, our model is
updated using sensitivity kernels based on the traveltime
eikonal equation, whereas CVM2.0 and USTClitho2.0 use
ray-tracing methods for model updating. Such data and
methodological differences are likely to contribute to the
observed discrepancies. Other factors, including inversion
parameter settings and initial model selection, may also in-
fluence the model results (Zhang and Song, 2024). Further-
more, our checkerboard test results suggest a reasonable
resolution in this region (Figure 4c). Further work is needed
to investigate these model differences in more detail.
Recently, several 3D azimuthal anisotropy models have

been developed for this region using Rayleigh waves (e.g.,
Han et al., 2022; Zhang Z et al., 2023). Overall, the azimuthal
anisotropy structures are relatively similar, suggesting that
both P-waves and surface waves provide consistent insights
into the anisotropic properties of the medium. In the shallow
crust (5 and 15 km depths), the azimuthal anisotropy direc-
tions in our model are generally consistent with those in Han
et al. (2022) and Zhang Z et al. (2023), and are mainly
aligned with the fault strike. At 30 km depth, these models all
show a clockwise rotation in the anisotropy direction. Our
model agrees with Han et al. (2022) and Zhang Z et al.
(2023) in showing north-south and northeast-southwest an-
isotropy directions beneath the eastern Tibetan Plateau and
the LXJF. However, there are differences in the XJF: Zhang
Z et al. (2023) show a weak anisotropy with a north-south
trend, and Han et al. (2022) show a north-south anisotropy,
while our model shows a northwest-southeast anisotropy,
almost perpendicular to the anisotropy direction beneath the
LXJF. This anisotropy direction agrees well with the stress
field direction obtained by Luo et al. (2016) from focal
mechanism solutions, suggesting that the P-wave anisotropy
structure may be more sensitive to the regional stress field.
At lithospheric mantle depths, our model is generally con-
sistent with Zhang Z et al. (2023), showing a prominent east-
west anisotropy in the southern part of the CDT and a
northwest-southeast anisotropy west of the RRF.
We also compare the anisotropy model in this study with

other 3D P-wave azimuthal anisotropy models from previous
studies. Recently, Huang et al. (2018) and Liu et al. (2022)
develop P-wave azimuthal anisotropy models for the CDT
and its adjacent region. Huang et al. (2018) use data from
ChinArray form 2011 to 2012, and employ the 3D ray tracing
method (Um and Thurber, 1987; Zhao et al., 1992) for ray
tracing to obtain a P-wave azimuthal anisotropy model in the
region. Liu et al. (2022) obtained the azimuthal anisotropy
model using ray tracing based on traveltime eikonal equation
(Liu and Tong, 2021) with data from ChinArry and the China
National Seismic Network (Zheng et al., 2010). For the sake
of comparison, we generate slices at the same depths as
Huang et al. (2018) (Figure S12).

In general, the north-south orientation of the FVDs in our
model is consistent and agrees well with surface GPS mea-
surements. However, there are notable differences in detail.
In the depth range of 5–15 km (Figures 9 and S12), the FVDs
in our model align well with the strike of faults, which is
consistent with the results of Huang et al. (2018) and Liu et
al. (2022). In addition, our model indicates minimal azi-
muthal anisotropy in the central part of the CDT, a feature
less prominent in the models of Huang et al. (2018) and Liu
et al. (2022). At depths around 30 to 50 km (Figure 9), There
are some differences in the distribution of low-velocity
anomalies between the models. In our model, the clockwise
rotation of the FVD is more consistent with surface GPS
displacement measurements than in the Huang et al. (2018)
and Liu et al. (2022) models. In addition, our model more
clearly highlights differences in azimuthal anisotropy be-
neath the LXJF and the XJF, suggesting different tectonic
settings and material properties in these areas. At a depth of
50 km, the east-west FVD in the southern part of our study
area is also more consistent with shear-wave splitting mea-
surements. Unlike the comparisons between isotropic mod-
els (Figure 8), the differences between azimuthal anisotropy
models are more pronounced. This may be attributed to the
complexity introduced by azimuthal anisotropy inversion
parameters, resulting the inversion process more compli-
cated. Furthermore, variations in data and methodology also
contribute to these differences.

6.2 Comparison of azimuthal anisotropy model with
shear-wave splitting measurements

Many studies publish their shear-wave splitting (SWS)
measurements in the southeastern Tibetan Plateau (Figure
S13; e.g., Shi et al., 2012, 2013; Chang et al., 2015; Zhang
and Gao, 2017). SWS from local earthquakes measures the
polarizations direction of fast shear-wave (referred to as
FPDs) and generally indicates crustal anisotropy (Crampin
and Gao, 2006; Li Y et al., 2021). At depths of 5 and 15 km,
the FVDs in our model are generally consistent with the
FPDs (Figure 9). These directions are also consistent with
the strike of the faults, suggesting that the anisotropy is
controlled by the fault structures. Telseismic XKS (SKS,
SKKS, PKS) splitting, which primarily reflects the aniso-
tropy in the upper mantle (Fouch and Rondenay, 2006), a
prominent feature is the sudden change in the FPDs from
north-south to east-west at about 26°N (Figure S13b; Sol et
al., 2007). In our model, the characteristic of this change in
anisotropy direction is particularly pronounced. At a depth of
50 km (Figure 9d), the FVDs in the ICB and YZC show high
agreement with the FPDs from the XKS splitting. Previous
studies of the Moho depth in these regions suggest a crustal
thickness of about 30–40 km (Dong et al., 2020; Cheng et al.,
2022). Therefore, the results of this study reflect azimuthal
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anisotropy in the upper mantle, which may indicate the di-
rection of mantle flow. However, this east-west FVD is less
pronounced in the results of Huang et al. (2018) and Liu et al.
(2022), which may be due to limitations in methods and data
resolution.

6.3 The relationship between seismic activity, velocity
structure and fault zones

In this study, we also performed earthquake relocation during
the inversion process, accounting for the effects of aniso-
tropic structures (Figure S10). The horizontal and vertical
profiles (Figures 9 and 10) show that seismic activity is
mainly concentrated in the transition zones between high-
and low-velocity anomalies. In profiles A and B (Figure 10),
earthquakes beneath the XJF are mainly distributed along the
outer edge of the low-velocity zone, especially in profile A.
Near the LMSF, profile D clearly shows two fault-driven
earthquake clusters, both located in areas with significant
velocity contrasts. These observations are consistent with
findings from several studies (e.g., Wei et al., 2010; Wang
and Gao, 2014; Dong et al., 2023; Liu et al., 2023), which
suggest that low-velocity zones are less prone to rupture due
to the ductile nature of the rock. In contrast, high-velocity
anomalies are likely to indicate brittle rock properties,
making the transition zones between high- and low-velocity
anomalies more susceptible to deformation and rupture un-
der fault stress and southeastern compression from the Ti-
betan Plateau, resulting in seismic activity.
The relocated earthquake locations show a strong corre-

lation between seismic events and fault zones. Compared to
the original earthquake locations, the relocated distribution is
more concentrated. This study provides a profile analysis of
seismic activity along major fault zones (Figure 11), showing
varying levels of seismic activity at different locations along
the same fault zone. Seismic activity beneath the LMSF is
particularly intense, with several earthquakes exceeding
magnitude 6, including the MS 8.0 Wenchuan earthquake in
2008 and the MS 7.0 Lushan earthquake in 2013. In profile
EE′ (Figure 11), seismicity is particularly concentrated in the
northern segment of the LMSF, with earthquake depths
predominantly between 10 and 20 km. A notable seismic gap
is observed around 103°E. The uneven spatial distribution of
seismic activity suggests an ongoing risk of large earth-
quakes in this region (e.g., Liang et al., 2018; Zheng and
Guo, 2021). The RRF also shows a clear segmentation
(profile FF′). In the northern segment of the Red River Fault,
seismicity is more frequent, probably due to the intersection
with the LXJF, which creates a complex stress field and
increases earthquake activity. In contrast, the southern seg-
ment of the RRF has significantly lower seismicity, even
where it intersects with the XJF (Wang F et al., 2014; Wan et
al., 2021). Based on extensive geophysical and geological

data, Li and Gao (2024) concluded that the RRF shows
strong segmentation, a view supported by our velocity and
anisotropy results. At crustal depths in the northern segment
of the Red River Fault, our model shows the FVDs nearly
parallel to the fault strike, appearing as north-south or
northeast-southwest (Figure 9). In contrast, the southern
segment shows either weak anisotropy or north-south ani-
sotropy, forming a certain angle with the fault strike. In terms
of P-wave velocity, the northern segment shows generally
similar velocity anomalies on both sides, while the southern
segment shows stronger velocity contrasts, particularly at
30 km depth (Figure 9c). This suggests that the southern
segment of the Red River Fault plays a greater role in con-
trolling material movement and stress distribution in the
region (Li and Gao, 2024), while the northern segment may
have a lesser influence. At 50 km depth, the FVDs of the
southern segment show an east-west orientation, while the
northern segment remains north-south, suggesting that the
anisotropy shift in the southern segment indicates that the
RRF does not extend into the lithospheric mantle. Profile
GG′ shows relatively high seismic activity at the intersec-
tions of the XSHF and DLSF, as well as the DLSF and XJF,
while the central parts of these fault zones show lower
seismic activity. The HH′ profile also shows stronger seismic
activity on the northern side of the ANF compared to the
southern side. These observations suggest that complex fault
systems at fault intersections may be more sensitive to stress
loading (Andrews, 1989; Ben-Zion and Sammis, 2003; Lee
et al., 2024).

7. Conclusions

This study utilizes P-wave first-arrival data selected from the
earthquake catalogs provided by the China Earthquake Ad-
ministration, covering the period from 2008 to 2022. From
these data, we construct both common-receiver and com-
mon-source differential traveltime datasets. Applying a
newly developed adjoint traveltime tomography method, we
jointly invert the absolute and differential traveltime data to
obtain a 3D P-wave velocity and azimuthal anisotropy model
beneath the southeastern margin of the Tibetan Plateau.
Checkerboard resolution tests indicate that the model is re-
liable over most of the study area. In addition, the results
agree well with previous tomographic studies and shear
wave splitting measurements, revealing further structural
details.
Our results show that at shallow crustal depths, the central

region of the CDT and the core of the ELIP exhibit relatively
weak azimuthal anisotropy. At 30 km depth, significant low-
velocity anomalies are observed beneath the SGT, LXJF and
XJF. However, there are distinct differences in the aniso-
tropic patterns of these anomalies: beneath the SGT and
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LXJF, the FVD aligns north-south or northeast-southwest,
whereas beneath the XJF it aligns northwest-southeast. This
contrast suggests significant differences in material proper-
ties and tectonic setting between these regions. In the
southern part of the study area, in contrast to other tomo-
graphic models, our results highlight a pronounced east-west
anisotropy at upper mantle depths, which agrees well with
teleseismic shear wave splitting observations. In terms of
seismic activity, high levels of seismicity are observed in
regions of sharp velocity contrasts across the southeastern
margin of the Tibetan Plateau and are closely associated with
major fault zones. Both the RRF and XJF show spatially
heterogeneous seismic activity, and a significant seismic gap
is observed in the southern segment of the LMSF. Earth-
quakes also occur more frequently at fault intersections, such
as where the northern RRF intersects the LXJF and along the
northern segment of the XJF. The newly derived P-wave
velocity and anisotropy model from this study provides new
insights into tectonic deformation and seismogenic me-
chanisms beneath the southeastern Tibetan Plateau.
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