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SUMMARY

The attenuation operator ¢* represents the total path attenuation and characterizes the amplitude
decay of a propagating seismic wave. Calculating ¢* is typically required in seismic attenuation
tomography. Traditional methods for calculating ¢#* require determining the ray path explicitly.
However, ray tracing can be computationally intensive when processing large data sets, and
conventional ray tracing techniques may fail even in mildly heterogeneous media. In this study,
we propose a modified fast sweeping method (MFSM) to solve the governing equation for
t* without explicitly calculating the ray path. The approach consists of two main steps. First,
the traveltime field is calculated by numerically solving the eikonal equation using the fast
sweeping method. Secondly, #* is computed by solving its governing equation with the MFSM,
based on the discretization of the gradient of #* using an upwinding scheme derived from the
traveltime gradient. The MFSM is rigorously validated through comparisons with analytical
solutions and by examining #* errors under grid refinement in both simple and complex models.
Key performance metrics, including convergence, number of iterations and computation time,
are evaluated. Two versions of the MFSM are developed for both Cartesian and spherical
coordinate systems. We demonstrate the practical applicability of the developed MFSM in
calculating #* in North Island, and discuss the method’s efficiency in estimating earthquake

response spectra.
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1 INTRODUCTION

Seismic attenuation, apart from geometrical spreading, is the pri-
mary process that reduces the amplitude and modifies the phase of
a propagating seismic wave. Attenuation is quantified by the quality
factor, O, defined as the ratio of energy lost during a wave cycle
to the total energy of the cycle. The reciprocal of Q, denoted as
1/0, depends on the rock properties and accounts for energy loss
through elastic and anelastic mechanisms, referred to as scattering
and intrinsic attenuation, respectively (Sato ef al. 2012). Scattering
attenuation arises from the interaction of seismic waves with small-
scale heterogeneities in the elastic properties of the medium, such
as those caused by intense rock fracturing. On the other hand, intrin-
sic attenuation occurs when the kinetic energy of seismic waves is
converted into thermal energy, either through internal friction along
cracks or via viscoelastic deformation of the medium. In practical
applications, with separation of seismic scattering from absorption,
the inversion yields intrinsic Q; without separation, the inversion
yields total Q.

A widely used method for determining Q is based on the estima-
tion of the attenuation operator ¢#*, which accounts for the damping
of the wave amplitude 4 through the exponential decay e=""/? (e.g.
Cormier 1982; Bindi et al. 2006), where w is the angular frequency.
Physically, * represents the cumulative attenuation along a ray
path connecting the hypocentre to the station (Kanamori 1967). It
can be mathematically defined as * = [, 1/(V(x)Q(x))d!, where
V(x) and Q(x) are the seismic wave velocity and quality factor,
respectively, L is the ray path. Synthetic #* values are typically cal-
culated by summation along the ray path (e.g. Lees & Lindley 1994;
Eberhart-Phillips et al. 2008; De Siena et al. 2009). Consequently,
the accuracy of ¢* is heavily dependent on the accuracy of the ray
path. Over the past few decades, a variety of seismic ray tracing tech-
niques have been developed to determine ray paths. These include
shooting and bending ray tracing methods, as well as numerical
solutions to the eikonal equation on a grid. Specifically, shooting
methods treat the ray equation as an initial value problem, iteratively
adjusting the ray’s take-off angle until the source—receiver path is
found (e.g. Cerveny 1987; Sambridge 1990; Rawlinson et al. 2001).

© The Author(s) 2025. Published by Oxford University Press on behalf of The Royal Astronomical Society. This is an Open Access
article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

9z0z Asenuer | uo Jesn (S|SY) seIpnis U] Jo [00yoS weujeleley S Aq 1E6£928/ 1L 8€1eBB/E/c g /a10ne/1B/WOoo dno-olwepeoe//:sdjy wols pspeojumoq


http://orcid.org/0000-0002-2862-0821
http://orcid.org/0000-0002-9083-3940
mailto:tongping@ntu.edu.sg
https://creativecommons.org/licenses/by/4.0/

2 D. Wangetal.

Bending methods (e.g. Julian & Gubbins 1977; Um & Thurber
1987) iteratively modify the geometry of an initially assumed path
between the source and receiver until it conforms to the Fermat’s
principle. The pseudo-bending technique (Um & Thurber 1987) and
the thurber-modified ray-bending approach (Block 1991), have been
widely used to trace ray paths in attenuation tomography (e.g. Lees
& Lindley 1994; Eberhart-Phillips et al. 2008; De Siena et al. 2009,
2010, 2014; Prudencio et al. 2015a; Wei & Wiens 2018; Sketsiou
etal 2021).

However, both shooting and bending methods may fail to con-
verge on the true ray paths in the presence of velocity variations
(e.g. Rawlinson & Sambridge 2004). This issue becomes increas-
ingly pronounced as the complexity of the medium grows. Recently,
grid-based schemes, such as the fast marching method (FMM) (e.g.
Sethian 1996; Sethian & Popovici 1999; Alkhalifah & Fomel 2001)
and the fast sweeping method (FSM) (e.g. Zhao 2005; Qian et al.
2007; Luo & Qian 2012), have gained significant popularity. These
methods numerically solve the eikonal equation on a gridded ve-
locity field to compute the traveltime from the source to every grid
point. The ray path is then traced from the receiver to the source
along the negative gradient of the traveltime field. These approaches
are fast, accurate and robust for calculating traveltime fields, even
in complex heterogeneous media (Rawlinson et al. 2010). Theoreti-
cally, grid-based methods can provide relatively accurate ray paths,
enabling the summation along these paths to yield a more precise
estimation of #*.

The aforementioned studies focus on methods for calculating #*
that rely on ray tracing. However, ray tracing can be computation-
ally expensive, particularly when dealing with a large number of
sources and/or receivers in a 3-D medium (Rawlinson & Sambridge
2004). In addition, the development of the adjoint-state attenuation
tomography method requires the calculation of #* without the use of
ray tracing (e.g. He 2020; Huang et al. 2020). To address this issue
and take advantages of grid-based methods, a grid-based approach
for calculating #* needs to be developed. By converting the integral
form of ¢* to its differential form and considering the relationship
between the gradient and the directional derivative, Huang et al.
(2020) derive the governing equation for ¢*. Later, He (2022) re-
formulates the governing equation for #* using the Leibniz formula
and develops a parallel FSM to solve it. However, their study would
benefit from further verification and evaluation, as well as a more
in-depth analysis of accuracy and convergence, and is primarily
focused on solving the equation in Cartesian coordinates.

In this paper, we develop a modified fast sweeping method
(MFSM) as an alternative approach for solving the #* governing
equation. Considering that * accumulates along the ray path, which
is not directly determined by traveltime but rather by the traveltime
gradient, the calculation of #* thus depends on the traveltime gra-
dient. The traveltime field is first calculated using the FSM, after
which ¢* is determined by the MFSM through an upwinding scheme
derived from the traveltime gradient. Our proposed MFSM provides
an effective and accurate method for calculating ¢* without the need
for ray tracing and serves as a promising forward modelling tool for
adjoint-state attenuation tomography.

The paper is organized as follows. From the definition of #*,
we provide a complete derivation of the governing equation for
t* in differential form in Section 2.1. Then, the FSM for solving
the eikonal equation is reviewed in Section 2.2, and the MFSM
for solving the #* governing equation is introduced in Section 2.3.
In Section 3, considering several simple and complex models, we
verify the MFSM by comparing its solutions with the analytical
solutions and analyse the relative and absolute #* errors with grid

refinement. The convergence analysis, number of iterations and
computational time are presented in Section 4. In Section 5, we
consider realistic velocity and attenuation models for North New
Zealand region and apply the MFSM to calculate and analyse the #*
field. Finally, we discuss and summarize the results in Section 6.

2 GOVERNING EQUATIONS AND
NUMERICAL ALGORITHMS

2.1 Governing equation for the attenuation operator ¢*

We denote the propagation velocity of the wave under considera-
tion (either P or S) by V(x). The traveltime ¢ from the source to
the receiver can be calculated by integrating the reciprocal of the
velocity along the ray path connecting them (éerven}'/ 2001)

1
= —d/ 1
' /LV(x) ’ o

where d/ is the arc length along the ray path L. In viscoelastic me-
dia, the reciprocal of the quality factor, 1/Q, is commonly used to
quantify attenuation. A high Q indicates low attenuation, while a
low Q indicates high attenuation. Previous studies suggest that at-
tenuation primarily affects the waveform through the complex and
frequency-dependent traveltime, rather than considerably altering
ray paths, provided that 1/Q <« 1 (Keers ef al. 2001). The attenua-
tion operator ¢* can be expressed as (e.g. Stachnik et al. 2004; Wei
& Wiens 2018)

1
S ) 2
’ /L 70 @

where Q(x) represents the P-wave or S-wave quality factor. It is
worth noting that, in the special case where V(x)Q(x) = 1, the
numerical calculation of eq. (2) was previously addressed by Cohen
& Kimmel (1997), Deschamps & Cohen (2001) and Cohen (2006)
in the context of calculating the Euclidean length of minimal paths.
The integral eqs (1) and (2) can be rewritten in differential forms
as,
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47w @
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where both d7/d/ and d¢*/d/ represent the directional derivatives
along the ray paths. Mathematically, these two differentials can be
expressed as:

dr /
— =V L
a 1(x) i (5)
dr* /
= V * - —_
1 1" (x) T (6)

where //|1| denotes the unit tangent vector along the ray path direc-
tion, and V¢ and V¢* represent the gradients of 7 and #*, respectively.
Notably, the same unit vector //|I| appearing in eqs (5) and (6) in-
dicates the identical evolution direction for both ¢ and #*. In an
isotropic medium, //|/| is equivalent to the unit normal of the wave
front:

I Vi(x)
Vel
For simplicity, in the following derivation we use s(x) (slowness) to

represent 1/ V' (x) and ¢g(x) to represent 1/Q(x). Based on egs (3),
(5), (7), the eikonal equation governing wave front propagation from

(M
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the point source x; to any position x, with a zero boundary condition
at x;, can be expressed as

Vi(x)- Vi(x) = s*(x), t(x;)=0. (8)

It is important to note that under the high-frequency approximation,
eq. (8) can also be derived from the wave equation (Shearer 2019).
Similarly, combining eqs (4), (6), (7) and (8), we can obtain

Vi(x) - Vi*(x) = q(x)s*(x), t*(x,) = 0. )

Thus, we have established eq. (9) as the governing equation for ¢*
in attenuation media. The derivation of eq. (9) follows a similar
workflow to that presented in Huang et al. (2020), but we provide a
more detailed procedure here. One difference is that, unlike eq. (1),
in Huang et al. (2020), t* is defined as t* = fL w/(V(x)QO(x))d!.
Thus, the constant 7 is absent from the right-hand side of eq. (9)
compared with that in Huang ez al. (2020). Both types of #* govern-
ing equation are practical, as we can choose to include the constant
7 in the governing equation for ¢*, or incorporate it when measuring
the observed ¢*.

It should be mentioned that solving eq. (9) is mathematically
equivalent to differentiating the solution of the eikonal equation with
respect to the metric—a concept early introduced in Benmansour
et al. (2010) along with a proposed fast-marching-like numerical
method. This approach was further developed in Mirebeau & Dreo
(2017), which extended it to anisotropic metrics, and in Bertrand
et al. (2023), which applied it in the context of neural network ar-
chitectures. In the following, we introduce an alternative numerical
method, the fast sweeping method (FSM) to solve eq. (9).

2.2 Overview of the FSM for solving the eikonal eq. (8)

To compute #*(x) using eq. (9), it is first necessary to determine
the traveltime field #(x) by solving eq. (8). In this study, we use the
FSM, an iterative algorithm, to solve eq. (8) on a rectangular grid
to obtain the traveltime field #(x) (Zhao 2005). Other numerical
methods (e.g. the fast marching method (FMM) (e.g. Sethian 1996;
Sethian & Popovici 1999; Alkhalifah & Fomel 2001) and the fast
iterative method (FIM) (e.g. Jeong & Whitaker 2008)) can also be
used to calculate #(x), since the calculations of 7(x) and #*(x) are de-
coupled. Below, we provide a brief overview of the FSM for solving
eq. (8). The core idea of the FSM is the utilization of nonlinear up-
wind differences combined with Gauss—Seidel iterations, executed
in alternating sweeping orders. This method is straightforward to

implement and highly efficient for parallel computation.

We present the algorithm for solving eq. (8) in 3-D Cartesian co-
ordinates (Zhao 2005). To address applications on a global scale, we
also extend the algorithm to spherical coordinates, as detailed in Ap-
pendix A. In 3-D Cartesian coordinates (x = (x, y, z)), the gradient
operator is expressed as V#(x) = (d;t, 9,1, 0:1). First, the 3-D do-
main Q C R? is discretized into a uniform mesh of grid points x; ;
with grid spacings Ax, Ay and Az. The total number of grid points
in the x, y and z directions are M;, M, and My. Employing the
Godunov upwind difference scheme to discretize eq. (8) at interior
gridpoints 2 <i <M, —1,2<j<M;,—1,2 <k < Mg —1),
we obtain

. 2 iy 12 e A2
(tijk — 8" N (i — 8 T N (6 — )" )

K E =5,

Ax Ay Az bk

(10)

where

xmin __ : ymin __ : zmin
G = mino g i)y G = min ok Gjeie)s Gk

= min(t,-,M,l, ti\j,k+1), (11)
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and

o~ x,x >0, (12)
x) =
0, x <0.

At the boundaries of the region (i.e.i = 1V M;; j =1V My k=
1 v My), one-sided difference schemes are applied. For instance,
at the left boundary x; ; x, the use of a one-sided difference yields

; 2 J 2
(trjh — 2,07 [ =0 70" (i — 650" 5
Ax * Ay * Az = Stk
(13)

Subsequently, the traveltime field #(x) can be determined using
the Fast Sweeping Algorithm (e.g. Zhao 2005; Leung & Qian 2006;
Fomel et al. 2009), together with solving of eqs (10) and (13). The
sweeping order of the Fast Sweeping Algorithm in 2-D Cartesian
coordinates is illustrated in Figs 1(a)—(d). Algorithm 1 details the
steps of the Fast Sweeping Algorithm.

Algorithm 1 Fast sweeping algorithm — 3-D local solver

Initialize:
n=1
for all grid points (i, j, k) do
if x; ; = x, (Source location) then

til_ ik 0
else
# ;& < oo ora sufficiently large number
end if
end for
repeat
Gauss-Seidel Iterations: Perform sweeps in 8 alternating
directions.

Define the sweeping index ranges:

(1)i=1:M1,j=lIMJ,k=11MK (2)l=M11,
jZIZMJ,kZIZMK
(3)i:1:M[,j:MJ:l,k:1:MK (4)l:M[1,
j:MJZI,kZIZMK
(S)iZIIMI,jZIZMJ,kZMKZI (6)l=M11,
j:1:MJ,k:MK:1
Ni=1:M,j=M:1k=Mc:1 (8)i=M:]l,

j=Mjil,k=MK11
for each sweep direction do
for i in i-range do
for j in j-range do
for k in k-range do

Compute 7'

using Gt g Bjar e and
1 ke
according to eqs (10) and (13)
tp [k < min(t); 7
end for
end for
end for
end for
n<n+1

until [[£0+D — (@], < ¢

2.3 Modified FSM for solving the * governing eq. (9)

In this section, we present a method for solving eq. (9) using the well-
determined 7(x), along with the velocity and attenuation models, to
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Figure 1. Illustration of the sweeping order in the fast sweeping algorithm and the discretization of partial derivatives of #* using the upwind difference scheme
for ¢ in Cartesian coordinates. In (a), (b), (¢) and (d), the blue arrows represent the sweeping directions, starting respectively from the upper-left, upper-right,
lower-left and lower-right corners of the computational domain. The red circle marks the source location. Grid nodes within the white area represent their ¢ (or
t*) values are yet to be updated, while grid nodes in the blue area indicate their ¢ (or #*) values have already been updated. Darker shades of blue signify more
recent updates. (e), (), (g) and (h) display four conditions for selecting grids to discretize the partial derivatives of ¢* using the upwind difference scheme for

t. Black squares denote traveltime ¢, while blue circles represent #*.

compute #*(x). To achieve this, we propose a MFSM to calculate
t*(x) based on 7(x) and its gradient.

In 3-D Cartesian coordinates, we discretize eq. (9) at the interior
grid points 2 <i <M; —1,2<j<M;—1,2<k<Mg—1)
into the following difference form:

N+ 4 N+ _
x min * %, x min ymin . *, y min
(t'?/lk ik ) (ti.,/:k —lijik ) (tr!j.k —lijik ) (t[,j.k —lijik )
+

Ax Ax Ay Ay +
zmin + * s, zmin
(ti,j.k —lijk ) (t[,j,k — ik ) _a (14)
Az Az =Sijk4i.jk>

where Vt(x) is discretized using the Godunov upwind difference
scheme, as is done when solving the eikonal equation. Here, ;! JT,?‘,
7" and ¢ 7} are determined based on eq. (11). Since ¢* accumu-
lates in the same direction as 7 as the wave propagates outward, and
the propagation direction depends on V#(x), the approximation of
Vi* requires that the selection of tl.f‘,.fkmi“ aligns with the choice of
1 %", as done when determining V#(x). Figs 1(e)—(h) illustrate how
65" and £"™" are determined based on £ and #' ™" in 2-D
Cartesian coordinates. A similar strategy is applied in 3-D Carte-

: : : #,Xmin ¥, ymin *, zmin
sian coordinates. Mathematically, 7™, 7,77, and ;%" can be

determined using the following rulers:

* . xmin __
t*,xmin _ tifl-jvk’ if tivj.k = li—Ljk 15
Lk T P if prmin _ g (15)
i+1,7,k° ijk = i+l ks
* : ymin __
wymin _ ) fimtae 1 G = ok 16
= T (16)
Lijwige WG =tk
* : zmin __ o
przmin _ Gk G0 =1, (17)
ijk £ if tzmin — ¢
ijk+10 ijk b jk+l-

It should be noted that, similar to eq. (13), one-sided differences
are employed at the boundaries of the computational domain. For
instance, at the boundary point x; ; ;, we have

N+ .
ymin *, ymin
(t1h —t2.j0)" (’f/‘,k B ’f,j.k) N (tlvflk - ’1..f.k) (tl*,;.k ~ Nk ) N

Ax Ax Ay Ay
zmin * * s, zmin
Mk = 1 jk Nk~ Wik 5 18
Az Az = S1,j.kq1.j k- ( )

Then, the *(x) field can be determined using the modified Fast
Sweeping Algorithm, together with solving of eqs (14) and (18).
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Algorithm 2 Modified fast sweeping algorithm — 3-D local solver
Initialize:
n=1
for all grid points (i, j, k) do
if x; ; x = x, (Source location) then
1 <0
else
£ < oo or asufficiently large number
end if
end for
Note: The traveltime field 7(x) is fixed (not updated) during the
following iterations.
repeat
Gauss-Seidel Iterations: Perform sweeps in 8 alternating
directions.
Define the sweeping index ranges:

(Di=1:M,j=1:Mk=1:Mcy (2)i=M:1,
jZIZMJ,kZIZMK
Gi=1:M,j=M:1Lk=1:M¢ (4)i=M:]1,
j:MJ:l,kZI:MK
(S)iZIZM[,jZIZMJ,kZMKZI (6)1=M11,
j=1:MJ,k=MK:1
Ni=1:M;,j=M:1k=Mg:1 (8)i=M:1,

j=MJ:1,k=MK:1
for each sweep direction do
for i in i-range do
for j in j-range do
for k in k-range do
Compute f;l"ﬁ( using 'y e 1L g
0 jaerslin jao Wt i B g

according to eqs (14) and (18)

*n+1 : oSnt
dtif’i'k <~ mln(z,.’f;ka, l*,.ijk).
end for
end for
end for
end for
n<n+1

until ||+ — 0 < v

Algorithm 2 details the steps of the Modified Fast Sweeping Al-
gorithm. Here, we should note that in heterogeneous media, the
gradient V#(x) may be discontinuous, even though #(x) itself re-
mains continuous (Zhao 2005). As a result, *(x) is in general
discontinuous at points where there are several shortest paths. So,
the convergence is not expected in the L* norm. Instead, we use
the L' norm as the convergence criteria. The discontinuity of £*(x)
can be observed in the following numerical tests in Section 3.3.
We have established the theoretical framework for the MFSM to
determine 7* in Cartesian coordinates. The MFSM for determining
t* in spherical coordinates can be found in Appendix A.

3 VERIFICATION OF THE MFSM

In this section, we validate the MFSM by comparing it with ana-
lytical solutions and analyse its errors as the grid size is adjusted,
considering several different models. All tests, algorithms and code
presented are designed for the 3-D case, with s(x) and g(x) being
homogeneous with respect to the y—axis. To avoid placing sources
and receivers at the boundary while minimizing computational cost,
we position them in the central x — z plane, using three nodes along
the y—axis.

MFSM for calculating tx 5

3.1 Uniform velocity and attenuation model

We begin by considering Model 1, as shown in Figs 2(a) and (b),
which is characterized by uniform Vp» and Qp in Cartesian coordi-
nates. We first consider the region discretized with spatial intervals
of Ax = Az =0.20 km, resulting in a grid of 151 by 151 grid nodes.
For such uniform model, the analytical solutions for #(x) and #*(x)
can be easily derived. The #(x) isolines computed using the FSM
and their analytical solutions (Figs 2a and c), as well as #*(x) isolines
calculated by the MFSM and their analytical solutions (Figs 2b and
d), exhibit strong consistency. The pattern of #*(x) isolines closely
resembles that of #(x) isolines. However, the values represented by
the isolines differ, with #*(x) being proportional to ¢ by a factor of
1/500.0, where 500.0 is the uniform Q p value. This proportionality
is evident from eqs (8) and (9), where the only difference is that
t* can be obtained by multiplying both sides of eq. (8) by 1/0p,
assuming a uniform Qp.

Forboth 7 (Fig. 2e) and ¢* (Fig. 2f), the absolute errors are smallest
(equal to zero) along the principal axes (horizontal and vertical
directions relative to the source) and largest along the diagonal
directions. This can be attributed to the angle between wave front
propagation and grid orientation, which is zero along the principal
axes and reaches 45° in the diagonal directions. The larger the angle,
the greater the errors introduced when solving eqs (8) and (9) using
the FSM and MFSM with a rectangular mesh. Beyond the principal
axes, the absolute errors in ¢ and ¢* accumulate with increasing
distance from the source (Figs 2e and f). A similar phenomenon
is observed in the grid-based fast marching method (FMM) when
solving the traveltime field # (Alkhalifah & Fomel 2001). For both
t (Fig. 2g) and ¢* (Fig. 2h), the percentage errors are larger near
the source and decrease significantly with distance. This occurs
because, in Cartesian coordinates with a regular grid distribution,
the wave front curvature near the source is high and undersampled,
whereas further from the source, the wave front becomes flatter and
is oversampled (e.g. Alkhalifah & Fomel 2001; Lan ef al. 2012; Lan
& Zhang 2013; Zhou et al. 2023). Close to the source (Figs 2g—
h), the relative errors in # and #* accumulates dramatically due to
the singularity at the point source (e.g. Alkhalifah & Fomel 2001;
Rawlinson & Sambridge 2004; Fomel ez al. 2009). In the records of a
horizontal receiver array, # and ¢* calculated with different grid sizes
show strong agreement with their analytical solutions (Figs 3a and
b). To provide a clear comparison, Figs 3(c)—(f) show the absolute
and relative errors of 7 and ¢*, which gradually decrease with grid
refinement. In Figs 3(e) and (f), the maximum relative error of both
t and #* decreases from ~ 10.8 %o (brown solid line) to ~ 1.08 %o
(black solid line).

Although the uniform model is the simplest, it provides valuable
insights into the fundamental characteristics of the #*(x) field. The
accuracy of ¢* is influenced by factors such as the angle between
wave front propagation and grid orientation, the curvature of the
wave front relative to the grid size, and the singularity at the point
source.

3.2 Constant-gradient velocity and attenuation models

To further validate the MFSM for solving #*, we consider Model
2, which incorporates a constant-gradient velocity (Fig. 4a), com-
bined with an attenuation model that features either a uniform Qp
(Fig. 4b) or a constant-gradient Q p (Fig. 4c). The region is initially
partitioned with spatial intervals of Ax = Az = 0.20 km, producing
a grid of 151 by 151 points.
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Figure 2. Model 1 consists of a uniform ¥p (a) and a uniform Q p (b), with ¥'p and Q p specified as 4.0 kms~! and 500.0, respectively. The source (red star) is
located at (15 km, 15 km). Comparisons of isolines for #(x) calculated using the FSM and the analytical solution are shown in (a) and (c), while those for #*(x)
calculated using the MFSM and the analytical solution are shown in (b) and (d), respectively. The #(x) and #*(x) fields are shown in (c) and (d), respectively.
The absolute and relative (in percentage) errors for 7(x) are shown in (e) and (g), while the absolute and the relative (in percentage) errors for #*(x) are shown
in (f) and (h). The yellow dashed lines along the diagonal directions represent auxiliary lines.

In Fig. 4(a), as Vp decreases from 6.0 to 2.0 km s~! in z direction,

t(x) isolines become denser gradually. Adopting the uniform Qp
model, the #* isolines (Fig. 4b) align with the # isolines (Fig. 4a),
with their values maintaining a ratio of 1/500.0. However, when in-

corporating the constant-gradient Q p model, the gradual decrease
in Qp in z direction leads to much denser 7* isolines (Fig. 4c). The
analytical solution for #(x) in a constant-gradient velocity model
can be found in Fomel et al. (2009). For a uniform Qp model
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Figure 3. The recorded 7 and #* for a horizontal receiver array spanning from (3 km, 0 km) to (28 km, 0 km) in Model 1 (Fig. 2). Compared to the analytical
solution, 7, along with the absolute and relative ¢ errors (in percentage) calculated using the FSM with grid refinement are shown in (a), (c) and (e), respectively.
Compared to the analytical solution, #*, along with the absolute and relative #* errors (in percentage) calculated using the MFSM with grid refinement are

shown in (b), (d) and (f), respectively.

(Figs 4a and b), the derivation of the analytical solution for #*(x)
is straightforward. When both V» and Qp have constant gradi-
ents (Figs 4a and c), we consider the numerical solution on a grid
with 0.01 km spatial intervals to be accurate, as the grid spacing
is sufficiently small to ensure precision. Therefore, the results cal-
culated using this dense grid are taken as the reference solution.
Alternatively, accurate ¢#*(x) can also be computed by numerical in-
tegration along the analytical ray paths, which correspond to arcs of
circles in a constant velocity gradient (Slotnick 1959). The #(x) and
t*(x) fields, along with their corresponding isolines, are shown in
Figs 4(d)—(f).

In Figs 4(g), (h), (j) and (k), the absolute and relative errors of ¢
and #* directly above the source are non-zero, primarily due to the
inexact first-order approximation of the derivatives of # with respect
to z, as Vp gradually varies along the z direction. Another finding is
that the largest absolute and relative errors for # and * (Figs 4g-h
and j—k) progressively deviate from the diagonal directions as depth
decreases. We attribute this deviation to the decrease in Vp with

decreasing depth. As discussed in Section 3.1, the primary source
of error stems from propagation distance inaccuracies caused by the
angle between wave front propagation and grid orientation. Thus,
in the constant-gradient velocity model (Fig. 4a), shallower depths
with lower Vp result in larger ¢ and ¢* errors. For the uniform Qp
model (Fig. 4b), variations in the absolute and relative ¢* errors
result from changes in V» and inaccuracies in ¢, with the latter also
being influenced by variations in V. For the constant-gradient Q p
model (Fig. 4¢c), as Q p decreases from 800.0 to 100.0, the absolute
and relative ¢* errors (Figs 4i and 1) also deviate from the diagonal
directions at shallower depths. This can be attributed to the fact
that lower Q p at shallower depths are more likely to generate larger
t* errors.

For the records of a horizontal receiver array, the absolute and
relative errors in ¢ and ¢* systematically decrease as the grid is
refined (Figs 5d—i). Specifically, for the uniform Q » model (Fig. 4b),
refining the grid size from 0.2 to 0.01 km reduces the maximum
absolute ¢* error from ~ 0.144 x 10~3 s (brown solid line) to ~
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Figure 4. Model 2 consists of a constant-gradient /» model (a) and a Qp model that is either uniform (b) or has a constant-gradient (c). In (a), Vp is
represented by Vp(x) = Vp(x,y,z) = 2.0 + 68922.0. In (b), Op is 500.0, while in (c), Qp is represented by Qp(x) = Op(x, y,z) = 100.0 + m,
The red star represents the point source, while the blue inverted triangles in (a), (b) and (c) indicate a horizontal receiver array. Comparisons of isolines for
t(x) calculated using the FSM and the analytical solution are shown in (a) and (d), with the absolute and relative (in percentage) errors presented in (g) and
(j), respectively. Including a uniform Q p model (b), comparisons of isolines for *(x) calculated using the MFSM and the analytical solution are shown in (b)
and (e), with the absolute and relative (in percentage) errors presented in (h) and (k), respectively. Including a constant-gradient Q p model (c), isolines for
*(x) calculated using the MFSM is shown in (c) and (f), while the absolute and relative (in percentage) errors between grid sizes of 0.20 km and 0.01 km are

presented in (i) and (1), respectively. The yellow dashed lines along the diagonal directions represent auxiliary lines.

0.011 x 1073 s (black solid line) (Fig. Se). Similarly, the maximum
relative ¢* error decreases from ~ 8.8 %o (brown solid line) to ~
0.7 %o (black solid line) in Fig. 5(h). For the constant-gradient O p
model (Fig. 4c), as the grid size decreases from 0.2 to 0.01 km, the
maximum absolute ¢* error decreases by ~ 0.518 x 1073 s (brown
and black solid lines) (Fig. 5f), while the maximum relative ¢* error
decreases by ~ 1.77 % (brown and black solid lines) (Fig. 5i). Ata
grid size of 0.01 km (black solid line), the calculated results show
negligible deviations from the analytical solutions (Figs 5e and h).
Thus, we use the solutions calculated with this grid size as the
reference for the constant-gradient V» and constant-gradient Qp
model (Figs 5f and i).

Variations in Vp and/or Qp influence the accumulation of ¢*
errors, with lower values of Vp and Qp generally leading to
larger errors. However, as the grid size is refined, these #* er-
rors progressively decrease and approach the analytical solution.
These results demonstrate the effectiveness of the MFSM in ac-
curately solving #* in models with constant-gradient velocity and
attenuation.

3.3 Heterogeneous velocity and attenuation models

In this section, we validate the MFSM for computing #* in complex
heterogeneous models with varying Vp and Q p, both in Cartesian
and spherical coordinates.
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Figure 5. The recorded ¢ and ¢* for a horizontal receiver array spanning from (3 km, 0 km) to (28 km, 0 km) in Model 2 (Fig. 4). Compared to the analytical
solution, ¢, along with the absolute and relative 7 errors (in percentage) calculated using the FSM with grid refinement are shown in (a), (d) and (g), respectively.
Including the uniform Q p model Figs 4(b), (¢) and (h) show #*, along with the absolute and relative * errors (in percentage) calculated using the MFSM with
grid refinement and compared to the analytical solution. Including the constant-gradient Q p model (Figs 4(c), (f) and (i) show #*, along with the absolute and
relative #* errors (in percentage) calculated using the MFSM with grid refinement and compared to the solutions obtained using a dense grid of a spacing of

0.01 km.

3.3.1 Examples in Cartesian coordinates

We examine Model 3 in Cartesian coordinates, where the heteroge-
neous Vp model is randomly generated (Fig. 6a), superimposed with
an attenuation model that is either a uniform (Q» = 500.0, Fig. 6b)
or randomly generated (Fig. 6¢). The modelled region spans 30 km
in the x direction and 15 km in the z direction. The source is placed
at (15 km, 10 km). The region is discretized on grids with sizes
Ax = Az 0f 0.09, 0.07, 0.05, 0.03 and 0.01 km, corresponding to
grid resolutions of 335x 168, 430x216, 601x301, 1001 x501 and
3001 x 1501, respectively.

The high and low Vp and Q p anomalies are randomly distributed
across the region, thus the isolines of 7(x) and #*(x) exhibit hetero-
geneous patterns (Figs 6a—f). With a uniform Qp model, the #*(x)
field and its isolines (Figs 6b and e) closely resemble the patterns
of the #(x) field and its isolines (Figs 6a and d). However, when the
random Qp model is applied, the #*(x) field and its corresponding
isolines (Figs 6¢ and f) become much more heterogeneous. The
solutions computed using the finest grid size of 0.01 km are taken
as the reference solution. The absolute errors in #(x) and #*(x) for
different grid sizes are illustrated in Figs 6(g)—(r). The patterns of

these errors are closely linked to the distribution of the hetero-
geneous Vp and Qp anomalies. Although the magnitudes of the
t(x) and t*(x) errors vary across the region, they systematically
decrease as the grid size is refined from 0.09 to 0.01 km (Figs

6g-1).

3.3.2 Numerical examples in spherical coordinates

To broaden the method’s applicability, we extend its application
to compute 7* in spherical coordinates. The theoretical framework
for this extension is detailed in Appendix A. For Model 4, the Vp
and Q p models are based on the AK135 reference model (Kennett
et al. 1995), as shown in Figs 7(a) and (b). It should be noted that
Op is determined by O, and O, as no Qp model is available in
the Ak135 model. The Vp perturbation, depicted in Fig. 7(c), is
derived from the MITP2008 model (Li ez al. 2008), and represents
the percentage deviation of Vp from the AK135 reference model.
The Qp perturbation, shown in Fig. 7(d), is obtained by scaling the
Vp perturbation from Fig. 7(c). The source, marked by a black star,
is positioned at a depth of 500.0 km.
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Figure 6. Model 3 consists of a heterogeneous V’p model (a) and a Q p model that is either uniform (b) or heterogeneous (c). The source (red star) is positioned
at (15 km, 10 km). Isolines for #(x) (black solid lines) are shown in (a) and (d). Including the uniform Q p model (b), isolines for #*(x) (blue solid lines) are
shown in (b) and (e). Including the heterogeneous Q p model (c), isolines for #*(x) (blue solid lines) are shown in (c) and (f). #(x) and #*(x) fields are shown in
(d), (e) and (f). With grid refinement from 0.09 to 0.01 km, (g), (j), (m) and (p) show the absolute #(x) errors, and (h), (k), (n) and (q) show the absolute #*(x)
errors for the uniform Q p model, and (i), (1), (0) and (r) show the absolute #*(x) errors for the heterogeneous Q p model. All errors are referenced against the

dense grid of a size of 0.01 km.

With the grid size adjusted to A¢ = 0.004, 0.003, 0.002 and
0.001 rad, and Ar =4.0, 3.0, 2.0 and 1.0 km, the grid resolutions are
390 x 712,520 x 949, 780 x 1424 and 1559 x 2847, respectively.
It should be noted that, while the calculations are conducted in 3-D
spherical coordinates (7, 6, ¢), only three grid nodes are arranged in
the 6-direction. The #(x) and #*(x) fields, along with their isolines
calculated using the FSM and MFSM, are shown in Figs 7(c)—
(f). The absolute errors of #(x) and 7*(x) for varying grid sizes
show a significant decrease with grid refinement (Figs 7g—1). We

also present ¢ and ¢* records for a receiver array positioned at
the surface, spanning from (45°, 0 km) to (135°, 0 km) in Fig. 8.
The solutions for ¢ and #* calculated with the finest grid (A¢ =
0.001 rad and Ar = 1.0 km) are used as reference solutions. As
shown in Figs 8(c)—(f), both the absolute and relative errors of ¢
and ¢* decrease as the grid is refined. Specifically, as the grid size
changes from A¢ = 0.004 rad and Ar = 4.0 km to A¢ = 0.001
rad and Ar = 1.0 km, the maximum absolute 7* errors decrease
by 67.0 x 1073 s (brown and black solid lines) (Fig. 8d), and the
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Figure 7. Model 4 consists of a ¥ model showing the percent deviation (c) from the ak135 reference ¥p model (a) and a Q p model showing the percent
deviation (d) from the O p model (b) derived from the ak135 reference. The source (red star) is positioned at 500.0 km depth. Isolines for 7(x) (black solid
lines) are shown in (c) and (e), and isolines for 7*(x) (blue solid lines) are shown in (d) and (f). 7(x) and #*(x) fields are illustrated in (e) and (f), respectively.
The blue inverted triangles in (c) and (d) indicate the locations of a receiver array. With grid refinement from 0.004 rad and 4.0 km, 0.003 rad and 3.0 km to
0.002 rad and 2.0 km, the absolute 7(x) errors are shown in (g), (i) and (k), while the absolute #*(x) errors are shown in (h), (j) and (1). All errors are referenced

to the dense grid of 0.001 rad and 1.0 km.

relative ¢* errors decrease by 8.59 % (brown and black solid lines)
(Fig. 8f).

These results, combined with those presented in Section 3.3.1,
demonstrate that the MFSM is effective in solving for #* in models
with heterogeneous Vp and Qp, in both Cartesian and spherical
coordinates.

4 CONVERGENCE ANALYSIS,
ITERATION COUNT AND
COMPUTATIONAL TIME

We use Model 3 and Model 4 to quantitatively analyse the
convergence behaviour, iteration count and computational time with
grid refinement. The mean L' error for £* over the entire region is
calculated using the following formula:

ZM M, Mg |t* — |
i=14aj=14Lk=1 |"ref,i, j, k num, i, j, k (19)
MM, Mg ’

L't =

where both £ and #,,, are numerical solutions computed by the
MFSM. Note that ¢ is the numerical solution computed with the
finest mesh and #,,,, is the numerical solution computed with other
mesh sizes. M;, M; and M, represent the number of grid points
along the three coordinate axes, as introduced in Section 2.2. The
order of accuracy for the n-th grid is calculated by

In Ly
[L7 () n-1 (20)

In 2 ’
hn—1

order =

where [L!(+*)], and &, are the L'(¢*) error and grid spacing for the
n-th grid, respectively.

For Model 3, the grid spacing, number of gridpoints, L'(¢*) error,
order of accuracy and computing time for various mesh sizes are
shown in Table 1. The reference solution is computed using a grid
spacing of 0.01 km. As the grid spacing is refined from 0.10 to
0.02 km, the L' errors decreased significantly, from 3.999 x 1073
to 0.599 x 107> s. We can observe that with grid refinement, the
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Figure 8. The recorded 7 and 7* for a horizontal receiver array in Model 4 (Fig. 7). The absolute and relative ¢ errors (in percentage) calculated using the FSM
with grid refinement are shown in (c) and (e), respectively. The absolute and relative #* errors (in percentage) calculated using the MFSM with grid refinement
are shown in (d) and (f), respectively. All errors are referenced to the dense grid of 0.001 rad and 1.0 km.

Table 1. Error analysis and computational efficiency of the MFSM for Model 3 in Cartesian coordinates.

Grid size (Ax; Ay; Az) Mesh L' errors (x 1073 s) Order of accuracy Time (s) Iterations
0.10 km 301x151x3 3.999 - 0.516 3
0.09 km 335x168x3 3.536 1.170 0.526 3
0.08 km 376x189x3 3.212 0.816 0.779 3
0.07 km 430x216x%3 2.873 0.835 0.980 3
0.06 km 501x251x3 2.470 0.979 1.305 3
0.05 km 601x301x3 2.051 1.019 2.010 3
0.04 km 751x376x3 1.583 1.161 3.069 3
0.03 km 1001x501x3 1.125 1.187 5.750 3
0.02 km 1501x751x3 0.599 1.556 15.062 3
0.01 km 3001x1501x3 - - 74.111 3
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Table 2. Error analysis and computational efficiency of the MFSM for Model 4 in spherical coordinates.

Grid size (A¢; AG; Ar) Mesh L' errors (x107% s) Order of accuracy Time (s) Iterations
0.004 rad; 4.0 km 390x712x3 44.127 - 2.719 2
0.003 rad; 3.0 km 5209493 33.106 0.999 5.201 2
0.002 rad; 2.0 km 780x1424x3 17.636 1.553 12.078 2
0.001 rad; 1.0 km 1559x2847x3 - - 64.011 2

MFSM achieves first-order accuracy and, in some cases, even higher
accuracy (Table 1). The convergence criterion for calculating ¢*,
defined as the maximum difference between two consecutive itera-
tions, is set to v = 1.0 x 107'2 5. For Model 3, only three Gauss—
Seidel iterations are required to meet the convergence criterion.
Similarly, for Model 4, Table 2 summarizes the grid spacing, num-
ber of gridpoints, L'(¢*) error, order of accuracy and computing
time for different mesh sizes. The reference solution is computed
using a grid spacing of A¢ = 0.001 rad and Ar = 1.0 km. The L'!
errors decrease from 44.127 x 107 to 17.636 x 10™* s as the grid
is refined from A¢ = 0.004 rad and Ar = 4.0 km to A¢ = 0.002
rad and Ar = 2.0 km. The MFSM method can achieve precision
exceeding first order when solving for #* in spherical coordinates.
Notably, only two Gauss—Seidel iterations are required to meet the
convergence criterion. This analysis further manifests that the devel-
oped MFSM is accurate, efficient and exhibits robust convergence
in calculating ¢* in both Cartesian and spherical coordinates system.

5 APPLICATION IN NORTH ISLAND,
NEW ZEALAND

In this section, we use the MFSM to solve for the 7* field based on
the realistic V'» and Q p models of the central North Island (Fig. 9a),
and discuss the application of #* in estimating earthquake response
spectra.

The topographic map of the central North Island is shown in
Fig. 9(a). The main tectonic and geological setting is as follows: In
the central North Island, the Pacific and Australian plates are con-
verging obliquely at a rate of 42 mm yr~! (DeMets et al. 1994). This
convergence is accommodated by the subduction of the Pacific plate
and deformation of the overlying Australian plate. The North Island
is situated above the Hikurangi subduction zone, which has resulted
in volcanism and extension in the Taupd Volcanic Zone (TVZ).
Volcanic activity within the TVZ varies along strike, with rhyolite-
dominated caldera volcanoes in the central section and andesite-
dominated cone volcanoes to the north and south (Fig. 9a).

The research region, outlined by the red solid line in the inset of
Fig. 9(a), has an oblique shape. To reduce computational costs, the
region is transformed into a regular grid with coordinates spanning
[—1.7°, 2.0°] x [—3.0°, 4.0°]. The 3-D Vp and Qp models are
extracted from the New Zealand Wide Model 2.2 (e.g. Eberhart-
Phillips et al. 2010a, 2015) and interpolated onto a grid with di-
mensions of 160 x 300 x 160. In Fig. 10, horizontal and vertical
sections of the Vp and Qp models passing through the source (red
star) located at coordinates (175.88°, —38.72°, 100.0 km) are pre-
sented. The primary characteristics are as follows. The velocity
model shows high Vp for the slab relative to the mantle wedge
and reduced velocity for the mantle below the TVZ (Figs 10a—c).
The Qp model exhibits high Op (900 — 1200) for the subducted
cold slab and low Qp (< 400) for the mantle wedge (Figs 10d—f).
Significant variations are observed in the mantle wedge along the
strike of the subduction zone, with the most pronounced low Qp
(< 250) occurring in the mantle wedge between depths of 50 and

85 km beneath the rhyolite-dominated, productive central segment
of the TVZ (Figs 10e—f).

We consider three slab earthquakes at depths ranging from 50.0
to 200.0 km and calculate their corresponding ¢* fields. As the slab
earthquake depth is adjusted from 200.0 to 100.0 km and then to
50.0 km, it transitions from beneath the backarc, through the arc, to
the forearc. As previously mentioned, * characterizes the spectral
attenuation of earthquakes (magnitude > 2.5) (Eberhart-Phillips &
McVerry 2003) through e~"/? (e.g. Cormier 1982; Bindi et al.
2006), which is routinely recorded by the seismographic network
at the surface. Accordingly, /* maps at a depth of 0 km for these
three earthquakes are shown in Figs 9(b)—(d). For earthquakes at
different depths, the corresponding #* maps show distinct patterns
(Figs 9b—d). For the earthquake beneath the backarc (Fig. 9b), a
pronounced high #* is observed at the TVZ, while a reduction in
t* appears southeast of the TVZ. For earthquakes beneath the arc
and forearc, the high #* region progressively shifts from southeast
to northwest, with these regions showing progressively lower #*
(Figs 9c—d). Notably, in Figs 9(c) and (d), the TVZ consistently
shows relatively high #* compared to the surrounding regions. To
explain these features, we present horizontal and vertical sections of
the ¢ and #* fields for the earthquake beneath the arc in Fig. 10.
Compared to ¢ isolines shown in Figs 10(a)—(c) and (g)—(i), the ¢*
isolines are highly heterogeneous (Figs 10d—f and j—1). The low Qp
in the crust and mantle wedge beneath the TVZ compresses the ¢*
isolines, resulting in larger #* (Fig. 9¢c). Conversely, the low ¢* in the
forearc region can mainly be attributed to wave propagation through
the high Qp slab.

The significant variations in V» and Qp across the North Is-
land result in distinct #* maps at the surface for earthquakes oc-
curring at different depths (Figs 9b—d). These synthetic #* values
for various earthquakes can be converted into a path-averaged at-
tenuation rate (C Q), which can then be used to refine the stan-
dard response spectral attenuation model (e.g. Eberhart-Phillips &
McVerry 2003; Eberhart-Phillips ef al. 2010b). To estimate C Q, it is
usually necessary to calculate #* for a range of source—receiver pairs.
This is conventionally done by integrating along ray paths using
= 1 1/(V(x)Q(x))dl. However, as mentioned earlier, calculat-
ing t* using this integration-based method can be time-consuming,
especially when numerous source—receiver pairs are involved. As
shown in Figs 9(b)—(d), the developed MFSM, which eliminates
the need for ray tracing, provides a convenient to obtain ¢*, thereby
facilitating the estimation of earthquake response spectra.

6 DISCUSSION

The traditional FSM (Zhao 2005) is used to solve the eikonal and
t*-governing equations, but it does not account for the point source
singularity, leading to inaccuracies near the source. Factored tech-
niques (e.g. Fomel et al. 2009; Luo & Qian 2012; Luo ef al. 2014)
have been developed to address this issue by better approximating
spherical wave fronts near the source. As a perspective for future
work, one could improve the accuracy of #* using the source factor-
ization techniques.
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Figure 9. (a) Map of North Island, New Zealand, showing topography and major tectonic features. Major faults are indicated by grey lines. The research
region is outlined by the red solid lines in the inset at the upper left corner, where the boundaries of the Australian Plate and the Pacific Plate are marked by
black solid lines. The Taupd Volcanic Zone (TVZ) is marked by black solid curves. Volcanic features are marked as follows: calderas (blue triangles), active
andesite volcanoes (red triangles) and non-silicic volcanic centres (brown triangles). Volcanic labels: Ak, Auckland; Ax, Alexandra; Mg, Maungataurari; WI,
White Island; Ok, Okataina; Rp, Ruapehu; Tr, Taranaki; Mo, Mangakino; Wh, Whakamaru; Tp, Taupd. (b), (c) and (d) show surface /* maps at 0 km depth,
with slab earthquakes (red star) located beneath the backarc, arc and forearc regions, respectively.

The core of the developed MFSM is to compute *(x) by solving
its governing equation (eq. 9) based on the upwind approximation
of the gradient V#(x), obtained from the numerical solution of the
Eikonal equation (eq. 8), with the two equations solved in succes-
sion. Considering a formulation that is mathematically equivalent
with eq. (9), fast-marching-like algorithms have been developed to
solve it and typically require solving two governing equations si-
multaneously (e.g. Deschamps & Cohen 2001; Benmansour e? al.
2010; Rouchdy & Cohen 2013; Peton & Lardjane 2022). This moti-
vates the development of an alternative MFSM or a modified FMM
that can solve #(x) and #*(x) simultaneously. In addition, incorpo-
rating alternative methods like the fast iterative method (FIM) (e.g.
Jeong & Whitaker 2008), finite-element method (FEM) (e.g. Pullan
et al. 2002) or discontinuous Galerkin method (DGM) (e.g. Cheng
& Shu 2007) into #* solutions could expand forward modelling
tools, particularly for adjoint-state attenuation tomography (e.g. He
2020; Huang et al. 2020).

At present, the FSM and MFSM are tested on a planar Earth’s
surface, but real-world applications often involve complex topogra-
phy, such as mountainous or volcanic regions (e.g. Sun et al. 2011;
Garcia-Yeguas et al. 2012; Prudencio et al. 2015a, b). By integrating
methods like unstructured grids (e.g. Rawlinson & Sambridge 2004;
Qian et al. 2007) or the topography-dependent anisotropic eikonal
equation (e.g. Lan & Zhang 2013; Mirebeau & Dreo 2017; Zhou
et al. 2023), the MFSM could be adapted to effectively calculate ¢
and ¢* on irregular surfaces.

7 CONCLUSIONS

Seismic attenuation (mainly intrinsic and scattering attenuation) can
cause changes in amplitude and phase for a propagating seismic

wave, with these changes characterized by the attenuation operator
t*. Traditionally, #* is calculated by integrating the reciprocal of the
velocity-quality factor O product along a ray path determined via
ray tracing. To avoid ray tracing and enable the development of a
ray-free attenuation tomography method, we propose a MFSM to
directly compute #*.

The MFSM computes ¢* by numerically solving the differen-
tial form of its governing equation. First, the integral expressions
for ¢ and #* are converted into differential forms using directional
derivatives. By relating the directional derivative to the gradient,
the eikonal equation for ¢ and the governing equation for ¢* are
derived. The traveltime 7 is numerically computed using the classic
fast sweeping method (Zhao 2005), and it remains fixed while solv-
ing for #*. Given that * and ¢ share the same ray path, the gradient
of t* (Vt*) is discretized using the upwinding scheme derived from
Vt. The ¢* field is then calculated by solving the discretized t* gov-
erning equation using the Fast Sweeping Algorithm, based on the
velocity and attenuation models, and the determined # field.

The developed MFSM is validated through several numerical
experiments. First, t* calculated by the MFSM is compared with
analytical solutions for uniform and constant-gradient models, with
an analysis of the absolute and relative #* errors. For heterogeneous
velocity and attenuation models, #* cais lculated with grid refine-
ment, and the convergence, iteration count and computation time
of the MFSM are also evaluated. The effectiveness of the MFSM is
demonstrated in both Cartesian and spherical coordinates. Finally,
using a realistic velocity and attenuation model for North Island,
New Zealand, we compute #* field for different slab earthquakes
and discuss the surface #* and their role in estimating earthquake
response spectra. In future work, this MFSM will be applied to
develop an adjoint-state attenuation tomography method.
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Figure 10. The horizontal and vertical sections passing through the source (red star) of the Vp (a—c) and Q p (d—f) models, along with the #(x) isolines (a—c),
calculated using the FSM and 7*(x) isolines (d—f), calculated by the MFSM. #(x) and #*(x) fields, along with their isolines, are shown in panels (g)—(i) and
(G)—(1), respectively. The earthquake, located beneath the arc region (Fig. 9b), has coordinates of 175.88° longitude, —38.72° latitude, and a depth of 100.0 km.
The white solid lines in each vertical cross-section represent the location of the Slab 2.0 interface.
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APPENDIX A: THE CALCULATION OF TRAVELTIME ¢t AND ATTENUATION
OPERATOR ¢ IN SPHERICAL COORDINATES

To address the specific application scenario for the earthquake tomography, we present the algorithm for solving eqs (8) and (9) in spherical
coordinates x = (r, 8, ¢). r represents the distance to the Earth’s centre. 6 and ¢ respectively denote the latitude and longitude. The gradient
of t(x) is Vt(x) = (0,¢, %391, @qut). Q represents the Earth’s volume in the 3-D space R x ©® x & = [0, 00) X [—%n, %n] x [0, 2m). In
spherical coordinates, the computational domain €2 is partitioned into a uniform mesh with grid points x; ; » and mesh sizes Ar, A0 and A¢.
The total number of the grid points in three directions are M;, M, and M, respectively. Employing the Godunov upwind difference scheme

to discretize eq. (8) at interior grid points 2 <i < M; — 1,2 <j <M, — 1,2 <k < Mg — 1)

7 min 2 6 mi 2 ¢ min 2
[(ti.jvk —lijk )+] " |:(ti,j,k — t,-f;:“ +j| + |:(ti,j.k — ik )" :| _ s’%/:k’ (A1)

Ar rij kA0 7, j,kCO80; j AP
where
t,r;n;(n =min(t—1jk, lit1,j4)s fﬁ»,"’?}in =min(t j—14, li j+1.4)s ffﬁ:n =min(t j 41, ti jkr1) (A2)
and
x, x >0,
W' = { 0 -0 (A3)

At the boundary of the domain (i.e.,i =1V M;;j =1V M ;k =1V M), the one-sided differences are used. For example, at the upper
boundary x; ; x, we have

i 2 min 2
tjk— b0t ? + (ke — tﬁ;‘,]/:n * + (hjr — tid,’j,k )" g (Ad)
Ar Vi jk AO V,'Y‘/'kaOSQ,"/_k Aq) TRk

Similar to that used in the Cartesian coordinates, we then employ the Fast Sweeping Algorithm to solve eqs (A1) and (A4).
In spherical coordinates, #* governing eq. (9) can be written in the following form,
- i - omi
(ti,jvk - t;]r'r,lll(n) (t;j,k - :j,r/:mn) (ti,j-k - tf]r'fllin) (t;fj.k - t:j.ekmm)

Ar Ar l",'_j,kAQ r,;MAQ

—+

A
t td)min + £ t*,d)min ( 5)
ijk Tk ik ik 5
=S8 jk4bi.jk>
74, jkCOSO; j kAP i j xCOSO; j A i.j ki,
*,7min %, f min *, ¢ min . .
where S and L can be determined by:
* : rmin __
prermin _ Gy 00 =1t y
R it g (A6)
itk W L = litljiks
* : Omin __
o fmin _ e 040 =t A7
ijk T o if temin - ( )
ij+1Lk> ik = lij+Lks
* : ¢min __
prpmin _ Gints 34750 =it N
O e i = (A8)
ikt Wl = ik

While employing one-sided differences at the boundary of the computational region, the difference form at the upper boundary, for example,
will be

+ O min\ T *, 6 min
(ra = tg0)” (60 = 850) | (w —770) " (0 — 655™)
Ar Ar ri,j_kAe I"i’j,kAe
.\ T .
¢ min *, ¢p min
(tl.j,k - ti.j,k ) (tl*,j,k - ti,j,k )

Vi.ijCOSQi’j,kA(]b ri,j,kCOSQi’j,k A¢)

(A9)

2
=8 jk4ijk

Finally, we use the Fast Sweeping Algorithm to solve eqs (A5) and (A9).
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