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S U M M A R Y 

The attenuation operator t∗ represents the total path attenuation and characterizes the amplitude 
decay of a propagating seismic wave. Calculating t∗ is typically required in seismic attenuation 

tomography. Traditional methods for calculating t∗ require determining the ray path explicitly. 
However, ray tracing can be computationally intensive when processing large data sets, and 

conventional ray tracing techniques may fail even in mildly heterogeneous media. In this study, 
we propose a modified fast sweeping method (MFSM) to solve the governing equation for 
t∗ without explicitly calculating the ray path. The approach consists of two main steps. First, 
the traveltime field is calculated by numerically solving the eikonal equation using the fast 
sweeping method. Secondly, t∗ is computed by solving its governing equation with the MFSM, 
based on the discretization of the gradient of t∗ using an upwinding scheme derived from the 
traveltime gradient. The MFSM is rigorously validated through comparisons with analytical 
solutions and by examining t∗ errors under grid refinement in both simple and complex models. 
Key performance metrics, including convergence, number of iterations and computation time, 
are evaluated. Two versions of the MFSM are developed for both Cartesian and spherical 
coordinate systems. We demonstrate the practical applicability of the developed MFSM in 

calculating t∗ in North Island, and discuss the method’s efficiency in estimating earthquake 
response spectra. 
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 I N T RO D U C T I O N  

eismic attenuation, apart from geometrical spreading, is the pri-
ary process that reduces the amplitude and modifies the phase of
 propagating seismic wave. Attenuation is quantified by the quality
actor, Q , defined as the ratio of energy lost during a wave cycle
o the total energy of the cycle. The reciprocal of Q , denoted as
 /Q , depends on the rock properties and accounts for energy loss
hrough elastic and anelastic mechanisms, referred to as scattering
nd intrinsic attenuation, respectively (Sato et al. 2012 ). Scattering
ttenuation arises from the interaction of seismic waves with small-
cale heterogeneities in the elastic properties of the medium, such
s those caused by intense rock fracturing. On the other hand, intrin-
ic attenuation occurs when the kinetic energy of seismic waves is
onverted into thermal energy, either through internal friction along
racks or via viscoelastic deformation of the medium. In practical
pplications, with separation of seismic scattering from absorption,
he inversion yields intrinsic Q ; without separation, the inversion
ields total Q . 
C© The Author(s) 2025. Published by Oxford University Press on behalf of The R
article distributed under the terms of the Creative Commons Attribution License (
permits unrestricted reuse, distribution, and reproduction in any medium, provided
A widely used method for determining Q is based on the estima-
ion of the attenuation operator t∗, which accounts for the damping
f the wave amplitude A through the exponential decay e−ωt∗/ 2 (e.g.
ormier 1982 ; Bindi et al. 2006 ), where ω is the angular frequency.
hysically, t∗ represents the cumulative attenuation along a ray
ath connecting the hypocentre to the station (Kanamori 1967 ). It
an be mathematically defined as t∗ = ∫ 

L 1 / (V (x ) Q (x )) dl, where
V (x ) and Q (x ) are the seismic wave velocity and quality factor,
espectively, L is the ray path. Synthetic t∗ values are typically cal-
ulated by summation along the ray path (e.g. Lees & Lindley 1994 ;
berhart-Phillips et al. 2008 ; De Siena et al. 2009 ). Consequently,

he accuracy of t∗ is heavily dependent on the accuracy of the ray
ath. Over the past few decades, a variety of seismic ray tracing tech-
iques have been developed to determine ray paths. These include
hooting and bending ray tracing methods, as well as numerical
olutions to the eikonal equation on a grid. Specifically, shooting
ethods treat the ray equation as an initial value problem, iteratively

djusting the ray’s take-off angle until the source–receiver path is
ound (e.g. Červený 1987 ; Sambridge 1990 ; Rawlinson et al. 2001 ).
oyal Astronomical Society. This is an Open Access
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Bending methods (e.g. Julian & Gubbins 1977 ; Um & Thurber 
1987 ) iteratively modify the geometry of an initially assumed path 
between the source and receiver until it conforms to the Fermat’s 
principle. The pseudo-bending technique (Um & Thurber 1987 ) and 
the thurber-modified ray-bending approach (Block 1991 ), have been 
widely used to trace ray paths in attenuation tomography (e.g. Lees 
& Lindley 1994 ; Eberhart-Phillips et al. 2008 ; De Siena et al. 2009 , 
2010 , 2014 ; Prudencio et al. 2015a ; Wei & Wiens 2018 ; Sketsiou 
et al. 2021 ). 

However, both shooting and bending methods may fail to con- 
verge on the true ray paths in the presence of velocity variations 
(e.g. Rawlinson & Sambridge 2004 ). This issue becomes increas- 
ingly pronounced as the complexity of the medium grows. Recently, 
grid-based schemes, such as the fast marching method (FMM) (e.g. 
Sethian 1996 ; Sethian & Popovici 1999 ; Alkhalifah & Fomel 2001 ) 
and the fast sweeping method (FSM) (e.g. Zhao 2005 ; Qian et al. 
2007 ; Luo & Qian 2012 ), have gained significant popularity. These 
methods numerically solve the eikonal equation on a gridded ve- 
locity field to compute the traveltime from the source to every grid 
point. The ray path is then traced from the receiver to the source 
along the negative gradient of the traveltime field. These approaches 
are fast, accurate and robust for calculating traveltime fields, even 
in complex heterogeneous media (Rawlinson et al. 2010 ). Theoreti- 
cally, grid-based methods can provide relatively accurate ray paths, 
enabling the summation along these paths to yield a more precise 
estimation of t∗. 

The aforementioned studies focus on methods for calculating t∗

that rely on ray tracing. However, ray tracing can be computation- 
ally expensive, particularly when dealing with a large number of 
sources and/or receivers in a 3-D medium (Rawlinson & Sambridge 
2004 ). In addition, the development of the adjoint-state attenuation 
tomography method requires the calculation of t∗ without the use of 
ray tracing (e.g. He 2020 ; Huang et al. 2020 ). To address this issue 
and take advantages of grid-based methods, a grid-based approach 
for calculating t∗ needs to be developed. By converting the integral 
form of t∗ to its differential form and considering the relationship 
between the gradient and the directional derivative, Huang et al. 
( 2020 ) derive the governing equation for t∗. Later, He ( 2022 ) re- 
for mulates the gover ning equation for t∗ using the Leibniz formula 
and develops a parallel FSM to solve it. However, their study would 
benefit from further verification and evaluation, as well as a more 
in-depth analysis of accuracy and convergence, and is primarily 
focused on solving the equation in Cartesian coordinates. 

In this paper, we develop a modified fast sweeping method 
(MFSM) as an alternative approach for solving the t∗ governing 
equation. Considering that t∗ accumulates along the ray path, which 
is not directly determined by traveltime but rather by the traveltime 
gradient, the calculation of t∗ thus depends on the traveltime gra- 
dient. The traveltime field is first calculated using the FSM, after 
which t∗ is determined by the MFSM through an upwinding scheme 
derived from the traveltime gradient. Our proposed MFSM provides 
an effective and accurate method for calculating t∗ without the need 
for ray tracing and serves as a promising forward modelling tool for 
adjoint-state attenuation tomography. 

The paper is organized as follows. From the definition of t∗, 
we provide a complete derivation of the governing equation for 
t∗ in differential form in Section 2.1 . Then, the FSM for solving 
the eikonal equation is reviewed in Section 2.2 , and the MFSM 

for solving the t∗ governing equation is introduced in Section 2.3 . 
In Section 3 , considering several simple and complex models, we 
verify the MFSM by comparing its solutions with the analytical 
solutions and analyse the relative and absolute t∗ errors with grid 
refinement. The convergence analysis, number of iterations and 
computational time are presented in Section 4 . In Section 5 , we 
consider realistic velocity and attenuation models for North New 

Zealand region and apply the MFSM to calculate and analyse the t∗

field. Finally, we discuss and summarize the results in Section 6 . 

2  G OV E R N I N G  E Q UAT I O N S  A N D  

N U M E R I C A L  A L G O R I T H M S  

2.1 Governing equation for the attenuation operator t∗

We denote the propagation velocity of the wave under considera- 
tion (either P or S) by V (x ) . The traveltime t from the source to 
the receiver can be calculated by integrating the reciprocal of the 
velocity along the ray path connecting them (Červený 2001 ) 

t =
∫ 

L 

1 

V (x ) 
d l, (1) 

where dl is the arc length along the ray path L . In viscoelastic me- 
dia, the reciprocal of the quality factor, 1 /Q , is commonly used to 
quantify attenuation. A high Q indicates low attenuation, while a 
low Q indicates high attenuation. Previous studies suggest that at- 
tenuation primarily affects the waveform through the complex and 
frequency-dependent traveltime, rather than considerably altering 
ray paths, provided that 1 /Q � 1 (Keers et al. 2001 ). The attenua- 
tion operator t∗ can be expressed as (e.g. Stachnik et al. 2004 ; Wei 
& Wiens 2018 ) 

t∗ =
∫ 

L 

1 

V (x ) Q (x ) 
dl, (2) 

where Q (x ) represents the P -wave or S -wave quality factor. It is 
worth noting that, in the special case where V (x ) Q (x ) = 1 , the 
numerical calculation of eq. ( 2 ) was previously addressed by Cohen 
& Kimmel ( 1997 ), Deschamps & Cohen ( 2001 ) and Cohen ( 2006 ) 
in the context of calculating the Euclidean length of minimal paths. 
The integral eqs ( 1 ) and ( 2 ) can be rewritten in differential forms 
as, 

dt 

dl 
= 1 

V (x ) 
, (3) 

dt∗

dl 
= 1 

V (x ) Q (x ) 
, (4) 

where both dt /dl and dt∗/dl represent the directional derivatives 
along the ray paths. Mathematically, these two differentials can be 
expressed as: 

dt 

dl 
= ∇t(x ) · l 

|l | , (5) 

dt∗

dl 
= ∇t∗(x ) · l 

|l | , (6) 

where l /|l | denotes the unit tangent vector along the ray path direc- 
tion, and ∇t and ∇t∗ represent the gradients of t and t∗, respectively. 
Notably, the same unit vector l /|l | appearing in eqs ( 5 ) and ( 6 ) in- 
dicates the identical evolution direction for both t and t∗. In an 
isotropic medium, l /|l | is equivalent to the unit normal of the wave 
front: 

l 

|l | =
∇t(x ) 

|∇t(x ) | . (7) 

For simplicity, in the following derivation we use s(x ) (slowness) to 
represent 1 /V (x ) and q(x ) to represent 1 /Q (x ) . Based on eqs ( 3 ),
( 5 ), ( 7 ), the eikonal equation governing wave front propagation from 
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he point source x s to any position x , with a zero boundary condition
t x s , can be expressed as 

t(x ) · ∇t(x ) = s2 (x ) , t(x s ) = 0 . (8) 

t is important to note that under the high-frequency approximation,
q. ( 8 ) can also be derived from the wave equation (Shearer 2019 ).
imilarly, combining eqs ( 4 ), ( 6 ), ( 7 ) and ( 8 ), we can obtain 

t(x ) · ∇t∗(x ) = q(x ) s2 (x ) , t∗(x s ) = 0 . (9) 

hus, we have established eq. ( 9 ) as the governing equation for t∗

n attenuation media. The derivation of eq. ( 9 ) follows a similar
orkflow to that presented in Huang et al. ( 2020 ), but we provide a
ore detailed procedure here. One difference is that, unlike eq. ( 1 ),

n Huang et al. ( 2020 ), t∗ is defined as t∗ = ∫ 
L π/ (V (x ) Q (x )) dl.

hus, the constant π is absent from the right-hand side of eq. ( 9 )
ompared with that in Huang et al. ( 2020 ). Both types of t∗ govern-
ng equation are practical, as we can choose to include the constant

in the governing equation for t∗, or incorporate it when measuring
he observed t∗. 

It should be mentioned that solving eq. ( 9 ) is mathematically
quivalent to differentiating the solution of the eikonal equation with
espect to the metric—a concept early introduced in Benmansour
t al. ( 2010 ) along with a proposed fast-marching-like numerical
ethod. This approach was further developed in Mirebeau & Dreo

 2017 ), which extended it to anisotropic metrics, and in Bertrand
t al. ( 2023 ), which applied it in the context of neural network ar-
hitectures. In the following, we introduce an alternative numerical
ethod, the fast sweeping method (FSM) to solve eq. ( 9 ). 

.2 Overview of the FSM for solving the eikonal eq. ( 8 ) 

o compute t∗(x ) using eq. ( 9 ), it is first necessary to determine
he traveltime field t(x ) by solving eq. ( 8 ). In this study, we use the
SM, an iterative algorithm, to solve eq. ( 8 ) on a rectangular grid

o obtain the traveltime field t(x ) (Zhao 2005 ). Other numerical
ethods (e.g. the fast marching method (FMM) (e.g. Sethian 1996 ;
ethian & Popovici 1999 ; Alkhalifah & Fomel 2001 ) and the fast

terative method (FIM) (e.g. Jeong & Whitaker 2008 )) can also be
sed to calculate t(x ) , since the calculations of t(x ) and t∗(x ) are de-
oupled. Below, we provide a brief overview of the FSM for solving
q. ( 8 ). The core idea of the FSM is the utilization of nonlinear up-
ind differences combined with Gauss–Seidel iterations, executed

n alternating sweeping orders. This method is straightforward to
mplement and highly efficient for parallel computation. 

We present the algorithm for solving eq. ( 8 ) in 3-D Cartesian co-
rdinates (Zhao 2005 ). To address applications on a global scale, we
lso extend the algorithm to spherical coordinates, as detailed in Ap-
endix A. In 3-D Cartesian coordinates ( x = ( x , y , z) ), the gradient
perator is expressed as ∇t(x ) = ( ∂x t, ∂y t, ∂z t) . First, the 3-D do-
ain � ⊂ R3 is discretized into a unifor m mesh of g rid points x i, j,k 

ith grid spacings �x , �y and �z. The total number of grid points
n the x , y and z directions are MI , MJ and MK . Employing the
odunov upwind difference scheme to discretize eq. ( 8 ) at interior
rid points (2 ≤ i ≤ MI − 1 , 2 ≤ j ≤ MJ − 1 , 2 ≤ k ≤ MK − 1) ,
e obtain [ 
( ti, j,k − t x min 

i, j,k )
+ 

�x 

] 2 
+

[ 
( ti, j,k − t y min 

i, j,k )
+ 

�y 

] 2 
+

[ 
( ti, j,k − t z min 

i, j,k )
+ 

�z 

] 2 
= s2 

i, j,k , 

(10) 

here 

x min 
i, j,k = min ( ti−1 , j,k , ti+ 1 , j,k ) , t y min 

i, j,k = min ( ti, j−1 ,k , ti, j+ 1 ,k ) , t z min 
i, j,k 

= min ( ti, j,k−1 , ti, j,k+ 1 ) , (11) 
nd 

( x )+ =
{ 

x , x > 0 , 

0 , x ≤ 0 . 
(12) 

t the boundaries of the region (i.e. i = 1 ∨ MI ; j = 1 ∨ MJ ; k =
 ∨ MK ), one-sided difference schemes are applied. For instance,
t the left boundary x 1 , j,k , the use of a one-sided difference yields 

[
( t1 , j,k − t2 , j,k )+ 

�x 

]2 

+
[ 

( t1 , j,k − t y min 
1 , j,k )

+ 

�y 

] 2 
+

[ 
( t1 , j,k − t z min 

1 , j,k )
+ 

�z 

] 2 
= s2 

1 , j,k , 

(13) 

Subsequently, the traveltime field t(x ) can be determined using
he Fast Sweeping Algorithm (e.g. Zhao 2005 ; Leung & Qian 2006 ;
omel et al. 2009 ), together with solving of eqs ( 10 ) and ( 13 ). The
weeping order of the Fast Sweeping Algorithm in 2-D Cartesian
oordinates is illustrated in Figs 1 (a)–(d). Algorithm 1 details the
teps of the Fast Sweeping Algorithm. 

lgorithm 1 Fast sweeping algorithm – 3-D local solver 
Initialize: 
n = 1 
for all grid points ( i, j, k) do 

if x i, j,k = x s (Source location) then 

t1 
i, j,k ← 0 

else 
t1 
i, j,k ← ∞ or a sufficiently large number 

end if 
end for 
repeat 

Gauss-Seidel Iterations: Perform sweeps in 8 alternating
directions. 

Define the sweeping index ranges: 
(1) i = 1 : MI , j = 1 : MJ , k = 1 : MK (2) i = MI : 1,

j = 1 : MJ , k = 1 : MK 

(3) i = 1 : MI , j = MJ : 1, k = 1 : MK (4) i = MI : 1,
j = MJ : 1, k = 1 : MK 

(5) i = 1 : MI , j = 1 : MJ , k = MK : 1 (6) i = MI : 1,
j = 1 : MJ , k = MK : 1 

(7) i = 1 : MI , j = MJ : 1, k = MK : 1 (8) i = MI : 1,
j = MJ : 1, k = MK : 1 

for each sweep direction do 
for i in i-range do 

for j in j-range do 
for k in k-range do 

Compute ̂ tn + 1 
i, j,k using tn 

i±1 , j,k , tn 
i, j±1 ,k , and

tn 
i, j,k±1 

according to eqs (10) and (13) 
tn + 1 
i, j,k ← min ( tn 

i, j,k ,̂ tn + 1 
i, j,k ) 

end for 
end for 

end for 
end for 
n ← n + 1 

until ‖ t ( n + 1) − t ( n ) ‖L1 ≤ ε 

.3 Modified FSM for solving the t∗ governing eq. ( 9 ) 

n this section, we present a method for solving eq. ( 9 ) using the well-
etermined t(x ) , along with the velocity and attenuation models, to
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Figure 1. Illustration of the sweeping order in the fast sweeping algorithm and the discretization of partial derivatives of t∗ using the upwind difference scheme 
for t in Cartesian coordinates. In (a), (b), (c) and (d), the blue arrows represent the sweeping directions, starting respectively from the upper-left, upper-right, 
lower-left and lower-right corners of the computational domain. The red circle marks the source location. Grid nodes within the white area represent their t (or 
t∗) values are yet to be updated, while grid nodes in the blue area indicate their t (or t∗) values have already been updated. Darker shades of blue signify more 
recent updates. (e), (f), (g) and (h) display four conditions for selecting grids to discretize the partial derivatives of t∗ using the upwind difference scheme for 
t . Black squares denote traveltime t , while blue circles represent t∗. 
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compute t∗(x ) . To achieve this, we propose a MFSM to calculate 
t∗(x ) based on t(x ) and its gradient. 

In 3-D Cartesian coordinates, we discretize eq. ( 9 ) at the interior 
grid points (2 ≤ i ≤ MI − 1 , 2 ≤ j ≤ MJ − 1 , 2 ≤ k ≤ MK − 1) 
into the following difference form: 

(
ti, j,k − t x min 

i, j,k 

)+ 

�x 

(
t∗
i, j,k − t∗, x min 

i, j,k 

)
�x 

+
(

ti, j,k − t y min 
i, j,k 

)+ 

�y 

(
t∗
i, j,k − t∗, y min 

i, j,k 

)
�y 

+ (
ti, j,k − t z min 

i, j,k 

)+ 

�z 

(
t∗
i, j,k − t∗, z min 

i, j,k 

)
�z 

= s2 
i, j,k qi, j,k , (14) 

where ∇t(x ) is discretized using the Godunov upwind difference 
scheme, as is done when solving the eikonal equation. Here, t x min 

i, j,k , 
t y min 
i, j,k and t z min 

i, j,k are determined based on eq. ( 11 ). Since t∗ accumu- 
lates in the same direction as t as the wave propagates outward, and 
the propagation direction depends on ∇t(x ) , the approximation of 
∇t∗ requires that the selection of t∗, x min 

i, j,k aligns with the choice of 
t x min 
i, j,k , as done when determining ∇t(x ) . Figs 1 (e)–(h) illustrate how 

t∗, x min 
i, j and t∗, y min 

i, j are determined based on t x min 
i, j and t y min 

i, j in 2-D 

Cartesian coordinates. A similar strategy is applied in 3-D Carte- 
sian coordinates. Mathematically, t∗, x min 

i, j,k , t∗, y min 
i, j,k and t∗, z min 

i, j,k can be 
determined using the following rulers: 

t∗, x min 
i, j,k =

{ 

t∗
i−1 , j,k , if t x min 

i, j,k = ti−1 , j,k , 

t∗
i+ 1 , j,k , if t x min 

i, j,k = ti+ 1 , j,k , 
(15) 

t∗, y min 
i, j,k =

{ 

t∗
i, j−1 ,k , if t y min 

i, j,k = ti, j−1 , k , 

t∗
i, j+ 1 ,k , if t y min 

i, j,k = ti, j+ 1 ,k , 
(16) 

t∗, z min 
i, j,k =

{ 

t∗
i, j,k−1 , if t z min 

i, j,k = ti, j,k−1 , 

t∗
i, j,k+ 1 , if t z min 

i, j,k = ti, j,k+ 1 . 
(17) 

It should be noted that, similar to eq. ( 13 ), one-sided differences 
are employed at the boundaries of the computational domain. For 
instance, at the boundary point x 1 , j,k , we have 

(
t1 , j,k − t2 , j,k 

)+ 

�x 

(
t∗
1 , j,k − t∗

2 , j,k 

)
�x 

+
(

t1 , j,k − t y min 
1 , j,k 

)+ 

�y 

(
t∗
1 , j,k − t∗, y min 

1 , j,k 

)
�y 

+ (
t1 , j,k − t z min 

1 , j,k 

)+ 

�z 

(
t∗
1 , j,k − t∗, z min 

1 , j,k 

)
�z 

= s2 
1 , j,k q1 , j,k . (18) 

Then, the t∗(x ) field can be determined using the modified Fast 
Sweeping Algorithm, together with solving of eqs ( 14 ) and ( 18 ). 

art/ggaf381_f1.eps
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Algorithm 2 Modified fast sweeping algorithm – 3-D local solver 
Initialize: 
n = 1 
for all grid points ( i, j, k) do 

if x i, j,k = x s (Source location) then 

t∗1 
i, j,k ← 0 

else 
t∗1 
i, j,k ← ∞ or a sufficiently large number 

end if 
end for 
Note: The traveltime field t(x ) is fixed (not updated) during the 
following iterations. 
repeat 

Gauss-Seidel Iterations: Perform sweeps in 8 alternating 
directions. 

Define the sweeping index ranges: 
(1) i = 1 : MI , j = 1 : MJ , k = 1 : MK (2) i = MI : 1, 

j = 1 : MJ , k = 1 : MK 

(3) i = 1 : MI , j = MJ : 1, k = 1 : MK (4) i = MI : 1, 
j = MJ : 1, k = 1 : MK 

(5) i = 1 : MI , j = 1 : MJ , k = MK : 1 (6) i = MI : 1, 
j = 1 : MJ , k = MK : 1 

(7) i = 1 : MI , j = MJ : 1, k = MK : 1 (8) i = MI : 1, 
j = MJ : 1, k = MK : 1 

for each sweep direction do 
for i in i-range do 

for j in j-range do 
for k in k-range do 

Compute ̂ t∗n + 1 
i, j,k using tn 

i±1 , j,k , tn 
i, j±1 ,k , 

tn 
i, j,k±1 , t

∗n 
i±1 , j,k , t

∗n 
i, j±1 ,k , t

∗n 
i, j,k±1 

according to eqs (14) and (18) 
t∗n + 1 
i, j,k ← min ( t∗n 

i, j,k , ̂ t∗n + 1 
i, j,k ). 

end for 
end for 

end for 
end for 
n ← n + 1 

until ‖ t∗( n + 1) − t∗( n ) ‖L1 ≤ υ
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lgorithm 2 details the steps of the Modified Fast Sweeping Al-
orithm. Here, we should note that in heterogeneous media, the
radient ∇t(x ) may be discontinuous, even though t(x ) itself re-
ains continuous (Zhao 2005 ). As a result, t∗(x ) is in general

iscontinuous at points where there are several shortest paths. So,
he convergence is not expected in the L∞ norm. Instead, we use
he L1 norm as the convergence criteria. The discontinuity of t∗(x )
an be observed in the following numerical tests in Section 3.3 .
e have established the theoretical framework for the MFSM to

etermine t∗ in Cartesian coordinates. The MFSM for determining
∗ in spherical coordinates can be found in Appendix A. 

 V E R I F I C AT I O N  O F  T H E  M F S M  

n this section, we validate the MFSM by comparing it with ana-
ytical solutions and analyse its errors as the grid size is adjusted,
onsidering several different models. All tests, algorithms and code
resented are designed for the 3-D case, with s(x ) and q(x ) being
omogeneous with respect to the y−axis. To avoid placing sources
nd receivers at the boundary while minimizing computational cost,
e position them in the central x − z plane, using three nodes along

he y−axis. 
.1 Uniform velocity and attenuation model 

e begin by considering Model 1, as shown in Figs 2 (a) and (b),
hich is characterized by uniform VP and Q P in Cartesian coordi-
ates. We first consider the region discretized with spatial intervals
f �x = �z = 0.20 km, resulting in a grid of 151 by 151 grid nodes.
or such uniform model, the analytical solutions for t(x ) and t∗(x )
an be easily derived. The t(x ) isolines computed using the FSM
nd their analytical solutions (Figs 2 a and c), as well as t∗(x ) isolines
alculated by the MFSM and their analytical solutions (Figs 2 b and
), exhibit strong consistency. The pattern of t∗(x ) isolines closely
esembles that of t(x ) isolines. However, the values represented by
he isolines differ, with t∗(x ) being proportional to t by a factor of
 / 500 . 0 , where 500.0 is the uniform Q P value. This proportionality
s evident from eqs ( 8 ) and ( 9 ), where the only difference is that
∗ can be obtained by multiplying both sides of eq. ( 8 ) by 1 /Q P ,
ssuming a uniform Q P . 

For both t (Fig. 2 e) and t∗ (Fig. 2 f), the absolute errors are smallest
equal to zero) along the principal axes (horizontal and vertical
irections relative to the source) and largest along the diagonal
irections. This can be attributed to the angle between wave front
ropagation and grid orientation, which is zero along the principal
xes and reaches 45◦ in the diagonal directions. The larger the angle,
he greater the errors introduced when solving eqs ( 8 ) and ( 9 ) using
he FSM and MFSM with a rectangular mesh. Beyond the principal
xes, the absolute errors in t and t∗ accumulate with increasing
istance from the source (Figs 2 e and f). A similar phenomenon
s observed in the grid-based fast marching method (FMM) when
olving the traveltime field t (Alkhalifah & Fomel 2001 ). For both
(Fig. 2 g) and t∗ (Fig. 2 h), the percentage errors are larger near

he source and decrease significantly with distance. This occurs
ecause, in Cartesian coordinates with a regular grid distribution,
he wave front curvature near the source is high and undersampled,
hereas further from the source, the wave front becomes flatter and

s oversampled (e.g. Alkhalifah & Fomel 2001 ; Lan et al. 2012 ; Lan
 Zhang 2013 ; Zhou et al. 2023 ). Close to the source (Figs 2 g–

), the relative errors in t and t∗ accumulates dramatically due to
he singularity at the point source (e.g. Alkhalifah & Fomel 2001 ;
awlinson & Sambridge 2004 ; Fomel et al. 2009 ). In the records of a
orizontal receiver array, t and t∗ calculated with different grid sizes
how strong agreement with their analytical solutions (Figs 3 a and
). To provide a clear comparison, Figs 3 (c)–(f) show the absolute
nd relative errors of t and t∗, which gradually decrease with grid
efinement. In Figs 3 (e) and (f), the maximum relative error of both
and t∗ decreases from ∼ 10.8 ‰ (brown solid line) to ∼ 1.08 ‰

black solid line). 
Although the uniform model is the simplest, it provides valuable

nsights into the fundamental characteristics of the t∗(x ) field. The
ccuracy of t∗ is influenced by factors such as the angle between
ave front propagation and grid orientation, the curvature of the
ave front relative to the grid size, and the singularity at the point

ource. 

.2 Constant-gradient velocity and attenuation models 

o further validate the MFSM for solving t∗, we consider Model
, which incorporates a constant-gradient velocity (Fig. 4 a), com-
ined with an attenuation model that features either a uniform Q P 

Fig. 4 b) or a constant-gradient Q P (Fig. 4 c). The region is initially
artitioned with spatial intervals of �x = �z = 0.20 km, producing
 grid of 151 by 151 points. 
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Figure 2. Model 1 consists of a uniform VP (a) and a uniform Q P (b), with VP and Q P specified as 4.0 km s−1 and 500.0, respectively. The source (red star) is 
located at (15 km, 15 km). Comparisons of isolines for t(x ) calculated using the FSM and the analytical solution are shown in (a) and (c), while those for t∗(x ) 
calculated using the MFSM and the analytical solution are shown in (b) and (d), respectively. The t(x ) and t∗(x ) fields are shown in (c) and (d), respectively. 
The absolute and relative (in percentage) errors for t(x ) are shown in (e) and (g), while the absolute and the relative (in percentage) errors for t∗(x ) are shown 
in (f) and (h). The yellow dashed lines along the diagonal directions represent auxiliary lines. 
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In Fig. 4 (a), as VP decreases from 6.0 to 2.0 km s−1 in z direction, 
t(x ) isolines become denser gradually. Adopting the uniform Q P 

model, the t∗ isolines (Fig. 4 b) align with the t isolines (Fig. 4 a), 
with their values maintaining a ratio of 1/500.0. However, when in- 
corporating the constant-gradient Q P model, the gradual decrease 
in Q P in z direction leads to much denser t∗ isolines (Fig. 4 c). The 
analytical solution for t(x ) in a constant-gradient velocity model 
can be found in Fomel et al. ( 2009 ). For a uniform Q P model 

art/ggaf381_f2.eps
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Figure 3. The recorded t and t∗ for a horizontal receiver array spanning from (3 km, 0 km) to (28 km, 0 km) in Model 1 (Fig. 2 ). Compared to the analytical 
solution, t , along with the absolute and relative t errors (in percentage) calculated using the FSM with grid refinement are shown in (a), (c) and (e), respectively. 
Compared to the analytical solution, t∗, along with the absolute and relative t∗ errors (in percentage) calculated using the MFSM with grid refinement are 
shown in (b), (d) and (f), respectively. 
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Figs 4 a and b), the derivation of the analytical solution for t∗(x )
s straightforward. When both VP and Q P have constant gradi-
nts (Figs 4 a and c), we consider the numerical solution on a grid
ith 0.01 km spatial intervals to be accurate, as the grid spacing

s sufficiently small to ensure precision. Therefore, the results cal-
ulated using this dense grid are taken as the reference solution.
lternatively, accurate t∗(x ) can also be computed by numerical in-

egration along the analytical ray paths, which correspond to arcs of
ircles in a constant velocity gradient (Slotnick 1959 ). The t(x ) and
∗(x ) fields, along with their corresponding isolines, are shown in
igs 4 (d)–(f). 
In Figs 4 (g), (h), (j) and (k), the absolute and relative errors of t

nd t∗ directly above the source are non-zero, primarily due to the
nexact first-order approximation of the derivatives of t with respect
o z, as VP gradually varies along the z direction. Another finding is
hat the largest absolute and relative errors for t and t∗ (Figs 4 g–h
nd j–k) progressively deviate from the diagonal directions as depth
ecreases. We attribute this deviation to the decrease in V with
P 
ecreasing depth. As discussed in Section 3.1 , the primary source
f error stems from propagation distance inaccuracies caused by the
ngle between wave front propagation and grid orientation. Thus,
n the constant-gradient velocity model (Fig. 4 a), shallower depths
ith lower VP result in larger t and t∗ errors. For the uniform Q P 

odel (Fig. 4 b), variations in the absolute and relative t∗ errors
esult from changes in VP and inaccuracies in t , with the latter also
eing influenced by variations in VP . For the constant-gradient Q P 

odel (Fig. 4 c), as Q P decreases from 800.0 to 100.0, the absolute
nd relative t∗ errors (Figs 4 i and l) also deviate from the diagonal
irections at shallower depths. This can be attributed to the fact
hat lower Q P at shallower depths are more likely to generate larger
∗ errors. 

For the records of a horizontal receiver array, the absolute and
elative errors in t and t∗ systematically decrease as the grid is
efined (Figs 5 d–i). Specifically, for the uniform Q P model (Fig. 4 b),
efining the grid size from 0.2 to 0.01 km reduces the maximum
bsolute t∗ error from ∼ 0 . 144 × 10−3 s (brown solid line) to ∼

art/ggaf381_f3.eps
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Figure 4. Model 2 consists of a constant-gradient VP model (a) and a Q P model that is either uniform (b) or has a constant-gradient (c). In (a), VP is 
represented by VP (x ) = VP ( x , y , z) = 2.0 + 

30 z 
6 . 0 −2 . 0 . In (b), Q P is 500.0, while in (c), Q P is represented by Q P (x ) = Q P ( x , y , z) = 100.0 + 

30 z 
800 . 0 −100 . 0 . 

The red star represents the point source, while the blue inverted triangles in (a), (b) and (c) indicate a horizontal receiver array. Comparisons of isolines for 
t(x ) calculated using the FSM and the analytical solution are shown in (a) and (d), with the absolute and relative (in percentage) errors presented in (g) and 
(j), respectively. Including a uniform Q P model (b), comparisons of isolines for t∗(x ) calculated using the MFSM and the analytical solution are shown in (b) 
and (e), with the absolute and relative (in percentage) errors presented in (h) and (k), respectively. Including a constant-gradient Q P model (c), isolines for 
t∗(x ) calculated using the MFSM is shown in (c) and (f), while the absolute and relative (in percentage) errors between grid sizes of 0.20 km and 0.01 km are 
presented in (i) and (l), respectively. The yellow dashed lines along the diagonal directions represent auxiliary lines. 
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0 . 011 × 10−3 s (black solid line) (Fig. 5 e). Similarly, the maximum 

relative t∗ error decreases from ∼ 8.8 ‰ (brown solid line) to ∼
0.7 ‰ (black solid line) in Fig. 5 (h). For the constant-gradient Q P 

model (Fig. 4 c), as the grid size decreases from 0.2 to 0.01 km, the 
maximum absolute t∗ error decreases by ∼ 0 . 518 × 10−3 s (brown 
and black solid lines) (Fig. 5 f), while the maximum relative t∗ error 
decreases by ∼ 1.77 % (brown and black solid lines) (Fig. 5 i). At a 
grid size of 0.01 km (black solid line), the calculated results show 

negligible deviations from the analytical solutions (Figs 5 e and h). 
Thus, we use the solutions calculated with this grid size as the 
reference for the constant-gradient VP and constant-gradient Q P 

model (Figs 5 f and i). 
Variations in VP and/or Q P influence the accumulation of t∗

errors, with lower values of VP and Q P generally leading to 
larger errors. However, as the grid size is refined, these t∗ er- 
rors progressively decrease and approach the analytical solution. 
These results demonstrate the effectiveness of the MFSM in ac- 
curately solving t∗ in models with constant-gradient velocity and 
attenuation. 

3.3 Heterogeneous velocity and attenuation models 

In this section, we validate the MFSM for computing t∗ in complex 
heterogeneous models with varying VP and Q P , both in Cartesian 
and spherical coordinates. 

art/ggaf381_f4.eps
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Figure 5. The recorded t and t∗ for a horizontal receiver array spanning from (3 km, 0 km) to (28 km, 0 km) in Model 2 (Fig. 4 ). Compared to the analytical 
solution, t , along with the absolute and relative t errors (in percentage) calculated using the FSM with grid refinement are shown in (a), (d) and (g), respectively. 
Including the uniform Q P model Figs 4 (b), (e) and (h) show t∗, along with the absolute and relative t∗ errors (in percentage) calculated using the MFSM with 
grid refinement and compared to the analytical solution. Including the constant-gradient Q P model (Figs 4 (c), (f) and (i) show t∗, along with the absolute and 
relative t∗ errors (in percentage) calculated using the MFSM with grid refinement and compared to the solutions obtained using a dense grid of a spacing of 
0.01 km. 
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.3.1 Examples in Cartesian coordinates 

e examine Model 3 in Cartesian coordinates, where the heteroge-
eous VP model is randomly generated (Fig. 6 a), superimposed with
n attenuation model that is either a uniform ( Q P = 500 . 0 , Fig. 6 b)
r randomly generated (Fig. 6 c). The modelled region spans 30 km
n the x direction and 15 km in the z direction. The source is placed
t (15 km, 10 km). The region is discretized on grids with sizes
x = �z of 0.09, 0.07, 0.05, 0.03 and 0.01 km, corresponding to

rid resolutions of 335 ×168, 430 ×216, 601 ×301, 1001 ×501 and
001 ×1501, respectively. 

The high and low VP and Q P anomalies are randomly distributed
cross the region, thus the isolines of t (x ) and t∗(x ) exhibit hetero-
eneous patterns (Figs 6 a–f). With a uniform Q P model, the t∗(x )
eld and its isolines (Figs 6 b and e) closely resemble the patterns
f the t(x ) field and its isolines (Figs 6 a and d). However, when the
andom Q P model is applied, the t∗(x ) field and its corresponding
solines (Figs 6 c and f) become much more heterogeneous. The
olutions computed using the finest grid size of 0.01 km are taken
s the reference solution. The absolute errors in t(x ) and t∗(x ) for
ifferent grid sizes are illustrated in Figs 6 (g)–(r). The patterns of
hese errors are closely linked to the distribution of the hetero-
eneous VP and Q P anomalies. Although the magnitudes of the
(x ) and t∗(x ) errors vary across the region, they systematically
ecrease as the grid size is refined from 0.09 to 0.01 km (Figs
 g–r). 

.3.2 Numerical examples in spherical coordinates 

o broaden the method’s applicability, we extend its application
o compute t∗ in spherical coordinates. The theoretical framework
or this extension is detailed in Appendix A. For Model 4, the VP 

nd Q P models are based on the AK135 reference model (Kennett
t al. 1995 ), as shown in Figs 7 (a) and (b). It should be noted that

Q P is determined by Qμ and Qκ , as no Q P model is available in
he Ak135 model. The VP perturbation, depicted in Fig. 7 (c), is
erived from the MITP2008 model (Li et al. 2008 ), and represents
he percentage deviation of VP from the AK135 reference model.
he Q P perturbation, shown in Fig. 7 (d), is obtained by scaling the

VP perturbation from Fig. 7 (c). The source, marked by a black star,
s positioned at a depth of 500.0 km. 

art/ggaf381_f5.eps
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Figure 6. Model 3 consists of a heterogeneous VP model (a) and a Q P model that is either uniform (b) or heterogeneous (c). The source (red star) is positioned 
at (15 km, 10 km). Isolines for t(x ) (black solid lines) are shown in (a) and (d). Including the uniform Q P model (b), isolines for t∗(x ) (blue solid lines) are 
shown in (b) and (e). Including the heterogeneous Q P model (c), isolines for t∗(x ) (blue solid lines) are shown in (c) and (f). t(x ) and t∗(x ) fields are shown in 
(d), (e) and (f). With grid refinement from 0.09 to 0.01 km, (g), (j), (m) and (p) show the absolute t(x ) errors, and (h), (k), (n) and (q) show the absolute t∗(x ) 
errors for the uniform Q P model, and (i), (l), (o) and (r) show the absolute t∗(x ) errors for the heterogeneous Q P model. All errors are referenced against the 
dense grid of a size of 0.01 km. 
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With the grid size adjusted to �φ = 0.004, 0.003, 0.002 and 
0.001 rad, and �r = 4.0, 3.0, 2.0 and 1.0 km, the grid resolutions are 
390 × 712 , 520 × 949 , 780 × 1424 and 1559 × 2847 , respectively. 
It should be noted that, while the calculations are conducted in 3-D 

spherical coordinates ( r , θ , φ), only three grid nodes are arranged in 
the θ -direction. The t(x ) and t∗(x ) fields, along with their isolines 
calculated using the FSM and MFSM, are shown in Figs 7 (c)–
(f). The absolute errors of t(x ) and t∗(x ) for varying grid sizes 
show a significant decrease with grid refinement (Figs 7 g–l). We 
also present t and t∗ records for a receiver array positioned at 
the surface, spanning from ( 45◦, 0 km) to ( 135◦, 0 km) in Fig. 8 . 
The solutions for t and t∗ calculated with the finest grid ( �φ = 

0.001 rad and �r = 1.0 km) are used as reference solutions. As 
shown in Figs 8 (c)–(f), both the absolute and relative errors of t
and t∗ decrease as the grid is refined. Specifically, as the grid size 
changes from �φ = 0.004 rad and �r = 4.0 km to �φ = 0.001 
rad and �r = 1.0 km, the maximum absolute t∗ errors decrease 
by 67 . 0 × 10−3 s (brown and black solid lines) (Fig. 8 d), and the 
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Figure 7. Model 4 consists of a VP model showing the percent deviation (c) from the ak135 reference VP model (a) and a Q P model showing the percent 
deviation (d) from the Q P model (b) derived from the ak135 reference. The source (red star) is positioned at 500.0 km depth. Isolines for t(x ) (black solid 
lines) are shown in (c) and (e), and isolines for t∗(x ) (blue solid lines) are shown in (d) and (f). t(x ) and t∗(x ) fields are illustrated in (e) and (f), respectively. 
The blue inverted triangles in (c) and (d) indicate the locations of a receiver array. With grid refinement from 0.004 rad and 4.0 km, 0.003 rad and 3.0 km to 
0.002 rad and 2.0 km, the absolute t(x ) errors are shown in (g), (i) and (k), while the absolute t∗(x ) errors are shown in (h), (j) and (l). All errors are referenced 
to the dense grid of 0.001 rad and 1.0 km. 
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elative t∗ errors decrease by 8.59 % (brown and black solid lines)
Fig. 8 f). 

These results, combined with those presented in Section 3.3.1 ,
emonstrate that the MFSM is effective in solving for t∗ in models
ith heterogeneous VP and Q P , in both Cartesian and spherical

oordinates. 

 C O N V E RG E N C E  A NA LY S I S ,  
T E R AT I O N  C O U N T  A N D  

O M P U TAT I O NA L  T I M E  

e use Model 3 and Model 4 to quantitatively analyse the
onvergence behaviour, iteration count and computational time with
rid refinement. The mean L1 error for t∗ over the entire region is
alculated using the following formula: 

L1 ( t∗) =
∑ MI 

i= 1 
∑ MJ 

j= 1 
∑ MK 

k= 1 
∣∣t∗

ref , i, j, k − t∗
num , i, j, k 

∣∣
MI MJ MK 

, (19) 
here both t∗
ref and tnum 

are numerical solutions computed by the
FSM. Note that t∗

ref is the numerical solution computed with the
nest mesh and tnum 

is the numerical solution computed with other
esh sizes. MI , MJ and MK , represent the number of grid points

long the three coordinate axes, as introduced in Section 2.2 . The
rder of accuracy for the n -th grid is calculated by 

order =
ln [ L1 ( t∗)]n 

[ L1 ( t∗)]n −1 

ln hn 
hn −1 

, (20) 

here [ L1 ( t∗)]n and hn are the L1 ( t∗) error and grid spacing for the
 -th grid, respectively. 
For Model 3, the grid spacing, number of gridpoints, L1 ( t∗) error,

rder of accuracy and computing time for various mesh sizes are
hown in Table 1 . The reference solution is computed using a grid
pacing of 0.01 km. As the grid spacing is refined from 0.10 to
.02 km, the L1 errors decreased significantly, from 3 . 999 × 10−5 

o 0 . 599 × 10−5 s. We can obser ve that with g rid refinement, the
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Figure 8. The recorded t and t∗ for a horizontal receiver array in Model 4 (Fig. 7 ). The absolute and relative t errors (in percentage) calculated using the FSM 

with grid refinement are shown in (c) and (e), respectively. The absolute and relative t∗ errors (in percentage) calculated using the MFSM with grid refinement 
are shown in (d) and (f), respectively. All errors are referenced to the dense grid of 0.001 rad and 1.0 km. 

Table 1. Error analysis and computational efficiency of the MFSM for Model 3 in Cartesian coordinates. 

Grid size ( �x ; �y ; �z) Mesh L1 errors ( ×10−5 s) Order of accuracy Time (s) Iterations 

0.10 km 301 ×151 ×3 3.999 – 0.516 3 
0.09 km 335 ×168 ×3 3.536 1.170 0.526 3 
0.08 km 376 ×189 ×3 3.212 0.816 0.779 3 
0.07 km 430 ×216 ×3 2.873 0.835 0.980 3 
0.06 km 501 ×251 ×3 2.470 0.979 1.305 3 
0.05 km 601 ×301 ×3 2.051 1.019 2.010 3 
0.04 km 751 ×376 ×3 1.583 1.161 3.069 3 
0.03 km 1001 ×501 ×3 1.125 1.187 5.750 3 
0.02 km 1501 ×751 ×3 0.599 1.556 15.062 3 
0.01 km 3001 ×1501 ×3 – – 74.111 3 
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Table 2. Error analysis and computational efficiency of the MFSM for Model 4 in spherical coordinates. 

Grid size ( �φ; �θ ; �r ) Mesh L1 errors ( ×10−4 s) Order of accuracy Time (s) Iterations 

0.004 rad; 4.0 km 390 ×712 ×3 44.127 – 2.719 2 
0.003 rad; 3.0 km 520 ×949 ×3 33.106 0.999 5.201 2 
0.002 rad; 2.0 km 780 ×1424 ×3 17.636 1.553 12.078 2 
0.001 rad; 1.0 km 1559 ×2847 ×3 – – 64.011 2 
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FSM achieves first-order accuracy and, in some cases, even higher
ccuracy (Table 1 ). The convergence criterion for calculating t∗,
efined as the maximum difference between two consecutive itera-
ions, is set to υ = 1 . 0 × 10−12 s. For Model 3, only three Gauss–
eidel iterations are required to meet the convergence criterion.
imilarly, for Model 4, Table 2 summarizes the grid spacing, num-
er of gridpoints, L1 ( t∗) error, order of accuracy and computing
ime for different mesh sizes. The reference solution is computed
sing a grid spacing of �φ = 0 . 001 rad and �r = 1 . 0 km. The L1 

rrors decrease from 44 . 127 × 10−4 to 17 . 636 × 10−4 s as the grid
s refined from �φ = 0 . 004 rad and �r = 4 . 0 km to �φ = 0 . 002
ad and �r = 2 . 0 km. The MFSM method can achieve precision
xceeding first order when solving for t∗ in spherical coordinates.
otably, only two Gauss–Seidel iterations are required to meet the

onvergence criterion. This analysis further manifests that the devel-
ped MFSM is accurate, efficient and exhibits robust convergence
n calculating t∗ in both Cartesian and spherical coordinates system.

 A P P L I C AT I O N  I N  N O RT H  I S L A N D,  
E W  Z E A L A N D  

n this section, we use the MFSM to solve for the t∗ field based on
he realistic VP and Q P models of the central North Island (Fig. 9 a),
nd discuss the application of t∗ in estimating earthquake response
pectra. 

The topographic map of the central North Island is shown in
ig. 9 (a). The main tectonic and geological setting is as follows: In

he central North Island, the Pacific and Australian plates are con-
erging obliquely at a rate of 42 mm yr−1 (DeMets et al. 1994 ). This
onvergence is accommodated by the subduction of the Pacific plate
nd deformation of the overlying Australian plate. The North Island
s situated above the Hikurangi subduction zone, which has resulted
n volcanism and extension in the Taupō Volcanic Zone (TVZ).
olcanic activity within the TVZ varies along strike, with rhyolite-
ominated caldera volcanoes in the central section and andesite-
ominated cone volcanoes to the north and south (Fig. 9 a). 

The research region, outlined by the red solid line in the inset of
ig. 9 (a), has an oblique shape. To reduce computational costs, the
egion is transformed into a regular grid with coordinates spanning
 −1 . 7◦, 2 . 0◦] × [ −3 . 0◦, 4 . 0◦] . The 3-D VP and Q P models are
xtracted from the New Zealand Wide Model 2.2 (e.g. Eberhart-
hillips et al. 2010a , 2015 ) and interpolated onto a grid with di-
ensions of 160 × 300 × 160 . In Fig. 10 , horizontal and vertical

ections of the VP and Q P models passing through the source (red
tar) located at coordinates ( 175 . 88◦, −38 . 72◦, 100.0 km) are pre-
ented. The primary characteristics are as follows. The velocity
odel shows high VP for the slab relative to the mantle wedge

nd reduced velocity for the mantle below the TVZ (Figs 10 a–c).
he Q P model exhibits high Q P ( 900 − 1200 ) for the subducted
old slab and low Q P ( < 400 ) for the mantle wedge (Figs 10 d–f).
ignificant variations are observed in the mantle wedge along the
trike of the subduction zone, with the most pronounced low Q P 

 < 250 ) occurring in the mantle wedge between depths of 50 and
5 km beneath the rhyolite-dominated, productive central segment
f the TVZ (Figs 10 e–f). 

We consider three slab earthquakes at depths ranging from 50.0
o 200.0 km and calculate their corresponding t∗ fields. As the slab
arthquake depth is adjusted from 200.0 to 100.0 km and then to
0.0 km, it transitions from beneath the backarc, through the arc, to
he forearc. As previously mentioned, t∗ characterizes the spectral
ttenuation of earthquakes (magnitude ≥ 2.5) (Eberhart-Phillips &
cVerry 2003 ) through e−ωt∗/ 2 (e.g. Cormier 1982 ; Bindi et al.

006 ), which is routinely recorded by the seismographic network
t the surface. Accordingly, t∗ maps at a depth of 0 km for these
hree earthquakes are shown in Figs 9 (b)–(d). For earthquakes at
ifferent depths, the corresponding t∗ maps show distinct patterns
Figs 9 b–d). For the earthquake beneath the backarc (Fig. 9 b), a
ronounced high t∗ is observed at the TVZ, while a reduction in
∗ appears southeast of the TVZ. For earthquakes beneath the arc
nd forearc, the high t∗ region progressively shifts from southeast
o northwest, with these regions showing progressively lower t∗

Figs 9 c–d). Notably, in Figs 9 (c) and (d), the TVZ consistently
hows relatively high t∗ compared to the surrounding regions. To
xplain these features, we present horizontal and vertical sections of
he t and t∗ fields for the earthquake beneath the arc in Fig. 10 .
ompared to t isolines shown in Figs 10 (a)–(c) and (g)–(i), the t∗

solines are highly heterogeneous (Figs 10 d–f and j–l). The low Q P 

n the crust and mantle wedge beneath the TVZ compresses the t∗

solines, resulting in larger t∗ (Fig. 9 c). Conversely, the low t∗ in the
orearc region can mainly be attributed to wave propagation through
he high Q P slab. 

The significant variations in VP and Q P across the North Is-
and result in distinct t∗ maps at the surface for earthquakes oc-
urring at different depths (Figs 9 b–d). These synthetic t∗ values
or various earthquakes can be converted into a path-averaged at-
enuation rate ( C Q ), which can then be used to refine the stan-
ard response spectral attenuation model (e.g. Eberhart-Phillips &
cVerr y 2003 ; Eberhar t-Phillips et al. 2010b ). To estimate C Q , it is

sually necessary to calculate t∗ for a range of source–receiver pairs.
his is conventionally done by integrating along ray paths using

∗ = ∫ 
L 1 / (V (x ) Q (x ) )dl. However, as mentioned earlier, calculat-

ng t∗ using this integration-based method can be time-consuming,
specially when numerous source–receiver pairs are involved. As
hown in Figs 9 (b)–(d), the developed MFSM, which eliminates
he need for ray tracing, provides a convenient to obtain t∗, thereby
acilitating the estimation of earthquake response spectra. 

 D I S C U S S I O N  

he traditional FSM (Zhao 2005 ) is used to solve the eikonal and
∗-governing equations, but it does not account for the point source
ingularity, leading to inaccuracies near the source. Factored tech-
iques (e.g. Fomel et al. 2009 ; Luo & Qian 2012 ; Luo et al. 2014 )
ave been developed to address this issue by better approximating
pherical wave fronts near the source. As a perspective for future
ork, one could improve the accuracy of t∗ using the source factor-

zation techniques. 
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Figure 9. (a) Map of North Island, New Zealand, showing topography and major tectonic features. Major faults are indicated by grey lines. The research 
region is outlined by the red solid lines in the inset at the upper left corner, where the boundaries of the Australian Plate and the Pacific Plate are marked by 
black solid lines. The Taupō Volcanic Zone (TVZ) is marked by black solid curves. Volcanic features are marked as follows: calderas (blue triangles), active 
andesite volcanoes (red triangles) and non-silicic volcanic centres (brown triangles). Volcanic labels: Ak, Auckland; Ax, Alexandra; Mg, Maungataurari; WI, 
White Island; Ok, Okataina; Rp, Ruapehu; Tr, Taranaki; Mo, Mangakino; Wh, Whakamaru; Tp, Taupō. (b), (c) and (d) show surface t∗ maps at 0 km depth, 
with slab earthquakes (red star) located beneath the backarc, arc and forearc regions, respectively. 

develop an adjoint-state attenuation tomography method. 
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The core of the developed MFSM is to compute t∗(x ) by solving 
its governing equation (eq. 9 ) based on the upwind approximation 
of the gradient ∇t(x ) , obtained from the numerical solution of the 
Eikonal equation (eq. 8 ), with the two equations solved in succes- 
sion. Considering a formulation that is mathematically equivalent 
with eq. ( 9 ), fast-marching-like algorithms have been developed to 
solve it and typically require solving two governing equations si- 
multaneously (e.g. Deschamps & Cohen 2001 ; Benmansour et al. 
2010 ; Rouchdy & Cohen 2013 ; Peton & Lardjane 2022 ). This moti- 
vates the development of an alternative MFSM or a modified FMM 

that can solve t(x ) and t∗(x ) simultaneously. In addition, incorpo- 
rating alternative methods like the fast iterative method (FIM) (e.g. 
Jeong & Whitaker 2008 ), finite-element method (FEM) (e.g. Pullan 
et al. 2002 ) or discontinuous Galerkin method (DGM) (e.g. Cheng 
& Shu 2007 ) into t∗ solutions could expand forward modelling 
tools, particularly for adjoint-state attenuation tomography (e.g. He 
2020 ; Huang et al. 2020 ). 

At present, the FSM and MFSM are tested on a planar Earth’s 
surface, but real-world applications often involve complex topogra- 
phy, such as mountainous or volcanic regions (e.g. Sun et al. 2011 ; 
Garcı́a-Yeguas et al. 2012 ; Prudencio et al. 2015a , b ). By integrating 
methods like unstructured grids (e.g. Rawlinson & Sambridge 2004 ; 
Qian et al. 2007 ) or the topography-dependent anisotropic eikonal 
equation (e.g. Lan & Zhang 2013 ; Mirebeau & Dreo 2017 ; Zhou 
et al. 2023 ), the MFSM could be adapted to effectively calculate t
and t∗ on irregular surfaces. 

7  C O N C LU S I O N S  

Seismic attenuation (mainly intrinsic and scattering attenuation) can 
cause changes in amplitude and phase for a propagating seismic 
wave, with these changes characterized by the attenuation operator 
t∗. Traditionally, t∗ is calculated by integrating the reciprocal of the 
velocity-quality factor Q product along a ray path determined via 
ray tracing. To avoid ray tracing and enable the development of a 
ray-free attenuation tomography method, we propose a MFSM to 
directly compute t∗. 

The MFSM computes t∗ by numerically solving the differen- 
tial form of its governing equation. First, the integral expressions 
for t and t∗ are converted into differential forms using directional 
derivatives. By relating the directional derivative to the gradient, 
the eikonal equation for t and the governing equation for t∗ are 
derived. The traveltime t is numerically computed using the classic 
fast sweeping method (Zhao 2005 ), and it remains fixed while solv- 
ing for t∗. Given that t∗ and t share the same ray path, the gradient 
of t∗ ( ∇t∗) is discretized using the upwinding scheme derived from 

∇t . The t∗ field is then calculated by solving the discretized t∗ gov- 
erning equation using the Fast Sweeping Algorithm, based on the 
velocity and attenuation models, and the determined t field. 

The developed MFSM is validated through several numerical 
experiments. First, t∗ calculated by the MFSM is compared with 
analytical solutions for uniform and constant-gradient models, with 
an analysis of the absolute and relative t∗ errors. For heterogeneous 
velocity and attenuation models, t∗ cais lculated with grid refine- 
ment, and the convergence, iteration count and computation time 
of the MFSM are also evaluated. The effectiveness of the MFSM is 
demonstrated in both Cartesian and spherical coordinates. Finally, 
using a realistic velocity and attenuation model for North Island, 
New Zealand, we compute t∗ field for different slab earthquakes 
and discuss the surface t∗ and their role in estimating earthquake 
response spectra. In future work, this MFSM will be applied to 

art/ggaf381_f9.eps
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Figure 10. The horizontal and vertical sections passing through the source (red star) of the VP (a–c) and Q P (d–f) models, along with the t(x ) isolines (a–c), 
calculated using the FSM and t∗(x ) isolines (d–f), calculated by the MFSM. t(x ) and t∗(x ) fields, along with their isolines, are shown in panels (g)–(i) and 
(j)–(l), respectively. The earthquake, located beneath the arc region (Fig. 9 b), has coordinates of 175 . 88◦ longitude, −38 . 72◦ latitude, and a depth of 100.0 km. 
The white solid lines in each vertical cross-section represent the location of the Slab 2.0 interface. 
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AV E LT I M E  t A N D  AT T E N UAT I O N  

T E S  

ography, we present the algorithm for solving eqs ( 8 ) and ( 9 ) in spherical 
ntre. θ and φ respectively denote the latitude and longitude. The gradient 
lume in the 3-D space R × � × 
 = [0 , ∞ ) × [ − 1 

2 π, 1 
2 π ] × [0 , 2 π ) . In 

to a uniform mesh with grid points x i, j,k and mesh sizes �r , �θ and �φ. 
nd MK , respectively. Employing the Godunov upwind difference scheme 
≤ MJ − 1 , 2 ≤ k ≤ MK − 1) : 

= s2 
i, j,k , (A1) 

in ( ti, j,k−1 , ti, j,k+ 1 ) (A2) 

(A3) 

 1 ∨ MK ), the one-sided differences are used. For example, at the upper 

= s2 
i, j,k . (A4) 

e Fast Sweeping Algorithm to solve eqs ( A1 ) and ( A4 ). 
e following form, )
+ 

(A5) 

(A6) 

(A7) 

(A8) 

utational region, the difference form at the upper boundary, for example, 

+ 

(A9) 

( A9 ). 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/243/3/ggaf381/8263934 by S R

ajaratnam
 School of Int Studies (R

SIS) user on 14 January 20
A P P E N D I X  A :  T H E  C A L C U L AT I O N  O F  T R
O P E R AT O R  t∗ I N  S P H E R I C A L  C O O R D I NA

To address the specific application scenario for the earthquake tom
coordinates x = ( r, θ, φ) . r represents the distance to the Earth’s ce
of t(x ) is ∇t(x ) = ( ∂r t ,

1 
r ∂θ t , 1 

rcos θ ∂φ t) . � represents the Earth’s vo
spherical coordinates, the computational domain � is partitioned in
The total number of the grid points in three directions are MI , MJ a
to discretize eq. ( 8 ) at interior grid points (2 ≤ i ≤ MI − 1 , 2 ≤ j [

( ti, j,k − tr min 
i, j,k )

+ 

�r 

]2 

+
[ 

( ti, j,k − t θ min 
i, j,k )

+ 

ri, j,k �θ

] 2 

+
[ 

( ti, j,k − tφ min 
i, j,k )+ 

ri, j,k cos θi, j,k �φ

] 2 

where 

tr min 
i, j,k = min ( ti−1 , j,k , ti+ 1 , j,k ) , t

θ min 
i, j,k = min ( ti, j−1 ,k , ti, j+ 1 ,k ) , t

φ min 
i, j,k = m

and 

( x )+ =
{ 

x , x > 0 , 

0 , x ≤ 0 . 

At the boundary of the domain (i.e., i = 1 ∨ MI ; j = 1 ∨ MJ ; k =
boundary x 1 , j,k , we have [

( t1 , j,k − t2 , j,k )+ 

�r 

]2 

+
[ 

( t1 , j,k − t θ min 
i, j,k )

+ 

ri, j,k �θ

] 2 

+
[ 

( t1 , j,k − tφ min 
i, j,k )+ 

ri, j,k cos θi, j,k �φ

] 2 

Similar to that used in the Cartesian coordinates, we then employ th
In spherical coordinates, t∗ governing eq. ( 9 ) can be written in th(

ti, j,k − tr min 
i, j,k 

)+ 

�r 

(
t∗
i, j,k − t∗, r min 

i, j,k 

)
�r 

+
(
ti, j,k − t θ min 

i, j,k 

)+ 

ri, j,k �θ

(
t∗
i, j,k − t∗, θ min 

i, j,k 

ri, j,k �θ(
ti, j,k − tφ min 

i, j,k 

)+ 

ri, j,k cos θi, j,k �φ

(
t∗
i, j,k − t∗, φ min 

i, j,k 

)
ri, j,k cos θi, j,k �φ

= s2 
i, j,k qi, j,k , 

where t∗, r min 
i, j,k , t∗, θ min 

i, j,k and t∗, φ min 
i, j,k can be determined by: 

t∗, r min 
i, j,k =

{ 

t∗
i−1 , j,k , if tr min 

i, j,k = ti−1 , j,k , 

t∗
i+ 1 , j,k , if tr min 

i, j,k = ti+ 1 , j,k , 

t∗, θ min 
i, j,k =

{ 

t∗
i, j−1 ,k , if t θ min 

i, j,k = ti, j−1 , k , 

t∗
i, j+ 1 ,k , if t θ min 

i, j,k = ti, j+ 1 ,k , 

t∗, φ min 
i, j,k =

{ 

t∗
i, j,k−1 , if tφ min 

i, j,k = ti, j,k−1 , 

t∗
i, j,k+ 1 , if tφ min 

i, j,k = ti, j,k+ 1 . 

While employing one-sided differences at the boundary of the comp
will be (

t1 , j,k − t2 , j,k 

)+ 

�r 

(
t∗
1 , j,k − t∗

2 , j,k 

)
�r 

+
(
t1 , j,k − t θ min 

i, j,k 

)+ 

ri, j,k �θ

(
t∗
1 , j,k − t∗, θ min 

i, j,k 

)
ri, j,k �θ(

t1 , j,k − tφ min 
i, j,k 

)+ 

ri, j,k cos θi, j,k �φ

(
t∗
1 , j,k − t∗, φ min 

i, j,k 

)
ri, j,k cos θi, j,k �φ

= s2 
i, j,k qi, j,k , 

Finally, we use the Fast Sweeping Algorithm to solve eqs ( A5 ) and 
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