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Abstract. Numerically solving multi-marginal optimal transport (MMOT) problems is
computationally prohibitive, even for moderate-scale instances involving l≥4 margi-
nals with support sizes of N ≥ 1000. The cost in MMOT is represented as a tensor
with N l elements. Even accessing each element once incurs a significant computa-
tional burden. In fact, many algorithms require direct computation of tensor-vector
products, leading to a computational complexity of O(N l) or beyond. In this paper,
inspired by our previous work [Comm. Math. Sci., 20, 2022], we observe that the costly
tensor-vector products in the Sinkhorn Algorithm can be computed with a recursive
process by separating summations and dynamic programming. Based on this idea,
we propose a fast tensor-vector product algorithm to solve the MMOT problem with
L1 cost, achieving a miraculous reduction in the computational cost of the entropy
regularized solution to O(N). Numerical experiment results confirm such high per-
formance of this novel method which can be several orders of magnitude faster than
the original Sinkhorn algorithm.

AMS subject classifications: 49M25, 65K10

Key words: Multi-marginal optimal transport, Sinkhorn algorithm, linear complexity, entropy
regularization.

∗Corresponding author. Email addresses: hwu@tsinghua.edu.cn (H. Wu), cch21@mails.tsinghua.edu.cn
(C. Chen), jing.chen@ntu.edu.sg (J. Chen), luobaojia2@huawei.com (B. Luo), shijin-m@sjtu.edu.cn

(S. Jin)

http://www.global-sci.org/csiam-am 1 ©2025 Global-Science Press



2 C. Chen et al. / CSIAM Trans. Appl. Math., x (2025), pp. 1-34

1 Introduction

Multi-marginal optimal transport, first proposed by Gangbo and Świȩch [18], is an ex-
tension of the classical optimal transport problem [7,36]. It aims to find an optimal trans-
port plan that minimizes total cost while fitting multiple marginal distributions. MMOT
problems naturally arise in various fields, such as machine learning [2, 5, 11, 20, 32], in-
compressible fluid dynamics [4,8,42], density function theory [10,14,22,23], Schrödinger
bridge [12, 19], and tomographic reconstruction [1], and thus have attracted wide atten-
tion in recent years.

However, the heavy computational burden of solving general MMOT problems lim-
its its broad application. For l-marginal distributions with support sizes of N, the l-th
order cost tensor in MMOT problems contains Nl elements. To fully obtain the infor-
mation of the cost tensor, it is inevitable to repeatedly access all elements in the ten-
sor, leading to a significant computational cost. For example, the generalized Sinkhorn
algorithms [6, 7, 30, 34, 40] require repeated computation of tensor-vector products, re-
sulting in a computational complexity of O(Nl). More severely, directly solving linear
programming problems has a computational complexity of NO(l). Therefore, these meth-
ods remain computationally prohibitive even for moderate-scale MMOT problems. Some
modified algorithms with lower computational complexity have been proposed for spe-
cific MMOT problems, such as the MMOT problem with a tree structure [19, 41] and the
Wasserstein barycenter [3, 6, 39].

In this work, we propose a novel implementation of the Sinkhorn algorithm for solv-
ing the entropy regularized MMOT problem with L1 cost applications in image process-
ing [38], computer vision [35] and seismic tomography [16,33,43], which has linear com-
putational complexity relative to support size N. This work is a follow-up work of the
fast Sinkhorn algorithms [28, 29] , which observe the special structure of the kernel ma-
trix with Wasserstein-1 metric and utilize dynamic programming techniques [21, 24–26],
achieving linear computational complexity for solving up to 2-marginal optimal trans-
port problem. Unlike the previous situation, the kernel matrix evolves into an l-th order
tensor in the l-marginal optimal transport problem. The computational burden of the
Sinkhorn algorithm becomes prohibitive due to the O(Nl) operations required by the
tensor-vector products. To address this problem, we observe a similar special structure
of the kernel tensor and accelerate the tensor-vector products using the series rearrange-
ment and dynamic programming techniques [25], which results in a fast Sinkhorn algo-
rithm with O(N) computational complexity.

The rest of the paper is organized as follows. In Section 2, we review the MMOT prob-
lem and the generalized Sinkhorn algorithm for the 1-dimensional (1D) and 3-marginal
case. Then, we introduce the key fast tensor-vector product technique and provide a de-
tailed implementation of our algorithm in Section 3. This algorithm can be conducted in
more general scenarios, such as high-dimensional and l-marginal optimal transport prob-
lems, which are presented in Section 4. In Section 5, numerical experiments are carried
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out to demonstrate the overwhelming advantage of our algorithm in terms of computa-
tional efficiency. Finally, we conclude this paper in Section 6.

2 Multi-marginal optimal transport and the Sinkhorn algorithm

We first review the MMOT problem and the Sinkhorn algorithm [6]. To streamline our
discussion, we exclusively showcase the 3-marginal optimal transport problem and its
corresponding Sinkhorn algorithm in 1D space. However, it is important to note that
this algorithm can be seamlessly extrapolated to address more marginal cases in higher
dimensional space. For a more comprehensive understanding, we refer the readers to [6].

We consider the discrete MMOT problem, which is a discretization of the continuous
MMOT problem [34]. It solves the following minimization problem:

W(u,v,w)= inf
T ∈Π
〈C,T 〉= inf

T ∈Π

N1

∑
i=1

N2

∑
j=1

N3

∑
k=1

cijktijk, (2.1)

in which u∈R
N1 ,v∈R

N2 ,w∈R
N3 are three discrete probabilistic distributions

u=(u1,u2,··· ,uN1
), v=(v1,v2,··· ,vN2

), w=(w1,w2,··· ,wN3
).

Here C = (cijk) ∈R
N1×N2×N3 is the cost tensor, and T = (tijk) ∈R

N1×N2×N3
0+ is the multi-

marginal transport plan, satisfying the linear constraints

T ∈Π=

{

T =(tijk)
∣

∣

∣

N2

∑
j=1

N3

∑
k=1

tijk =ui,
N1

∑
i=1

N3

∑
k=1

tijk =vj,
N1

∑
i=1

N2

∑
j=1

tijk =wk, tijk≥0

}

. (2.2)

In this work, our discussion is suitable for any N1, N2 and N3. For the sake of simplicity,
we assume N1=N2=N3=N in the rest of the paper.

The generalized Sinkhorn algorithm [6] was proposed to solve the regularized MMOT
problem by introducing an entropy regularization term

Wε(u,v,w)= inf
T ∈Π

N

∑
i,j,k=1

cijktijk+εtijk ln(tijk).

The above optimization problem can be solved using the method of Lagrange multipliers,
with the Lagrangian given by

L(T ,α,β,γ)=
N

∑
i,j,k=1

εln

(

tijk

Kijk

)

tijk+
N

∑
i=1

αi

(

N

∑
j,k=1

tijk−ui

)

+
N

∑
j=1

β j

(

N

∑
i,k=1

tijk−vj

)

+
N

∑
k=1

γk

(

N

∑
i,j=1

tijk−wk

)

, (2.3)
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where Kijk= e−cijk/ε. Define φ=(φ1,··· ,φN),ψ=(ψ1,··· ,ψN),ϕ=(ϕ1,··· ,ϕN) as

φi= e−
1
3−

αi
ε , ψj= e−

1
3−

β j
ε , ϕk= e−

1
3−

γk
ε .

Taking the derivative of the Lagrangian with respect to tijk and setting it equal to zero
yields

tijk =φiψj ϕkKijk, 1≤ i, j,k≤N. (2.4)

Combining Eq. (2.4) and the constraints in Eq. (2.2), we can obtain that when the regular-
ized MMOT problem attains its optimal solution, φ,ψ,ϕ satisfy

φi

N

∑
j,k=1

Kijkψj ϕk=ui, ψj

N

∑
i,k=1

Kijkφi ϕk=vj, ϕk

N

∑
i,j=1

Kijkφiψj =wk. (2.5)

Since the elements in K = (Kijk) are strictly positive, the generalized Sinkhorn algo-
rithm [6] can be applied to find scaling variables φ,ψ,ϕ satisfying the above equations
by iteratively updating

φ(t+1)=u⊘
(

K×j ψ
(t)×kϕ(t)

)

, (2.6)

ψ(t+1)=v⊘
(

K×i φ
(t+1)×kϕ(t)

)

, (2.7)

ϕ(t+1)=w⊘
(

K×i φ
(t+1)×j ψ

(t+1)
)

, (2.8)

in which⊘ represents pointwise division and t denotes the iterative step. Here the tensor-
vector products follow the notation in [15], having the forms of

(

K×j ψ
(t)×kϕ(t)

)

i
=

N

∑
j=1

N

∑
k=1

Kijkψ
(t)
j ϕ

(t)
k , (2.9)

(

K×i φ
(t+1)×kϕ(t)

)

j
=

N

∑
i=1

N

∑
k=1

Kijkφ
(t+1)
i ϕ

(t)
k , (2.10)

(

K×i φ
(t+1)×j ψ

(t+1)
)

k
=

N

∑
i=1

N

∑
j=1

Kijkφ
(t+1)
i ψ

(t+1)
j . (2.11)

The final MMOT distance is given by

Wǫ(u,v,w)=
N

∑
i,j,k=1

φiψj ϕkcijkKijk = 〈ϕ,(C⊙K)×i φ×j ψ〉, (2.12)

in which ⊙ represents the Hadamard product of tensors. The generalized Sinkhorn algo-
rithm is presented in Algorithm 1.
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Algorithm 1. Generalized Sinkhorn Algorithm.

Input: u,v,w of size (N,1), ε, tol, itr max.
Output: Wǫ(u,v,w).

1: Initialize φ,ψ,ϕ=1N/N, t=0,Res= Inf.
2: while (t< itr max) & (Res> tol) do

3: t← t+1.
4: φ←u⊘

(

K×j ψ×kϕ
)

.

5: ψ←v⊘
(

K×i φ×kϕ
)

.

6: ϕ←w⊘
(

K×i φ×j ψ
)

.

7: Res←sum
(

|φ⊙(K×j ψ×kϕ)−u |+ |ψ⊙(K×i φ×kϕ)−v |
)

.

8: return Wǫ(u,v,w)= 〈ϕ,(C⊙K)×i φ×j ψ〉.

Remark 2.1. Theoretically, obtaining approximate solutions with high accuracy requires
an adequately small entropic parameter ε, which may cause over- or underflow in nu-
merical calculations during the Sinkhorn iteration. The log-domain stabilization tech-
nique [13] can be employed to address this issue. When the infinite norm of φ,ψ or
φ exceeds a given threshold τ, the excessive parts of φ,ψ,φ are absorbed into α, β,γ to
avoid the over- and underflow

α ← α+εln(φ), β ← β+εln(ψ), γ ← γ+εln(ϕ),

φ ← 1N , ψ ← 1N , ϕ ← 1N .

Correspondingly, the tensor K should also be rescaled as Kijk← e(αi+β j+γk)/εKijk.

3 An algorithm for MMOT with linear complexity

The computational complexity of Algorithm 1 isO(N3) for 3-marginal MMOT problems,
and it scales to O(Nl) for the l-marginal case. The bottleneck arises from the repeated
tensor-vector products related to K and C⊙K in lines 4-8.

Inspired by the fast Sinkhorn algorithms for Wasserstein-1 distance [28, 29], we aim
to reduce the computational complexity from O(Nl) to O(N). For the sake of simplicity,
we discuss the acceleration of Algorithm 1 for 3-marginal case in this section. The im-
plementation can be naturally extended to the l-marginal case for any l≥ 3, which will
be discussed in Section 4.2. On a uniform mesh with a grid spacing of h†, the cost tensor
C=(cijk) based on the L1 norm writes

cijk =(|i− j|+|i−k|+|j−k|)h.

†The discussion can be naturally extended to the case of non-uniform mesh.
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Thus, the corresponding kernel tensor K=(Kijk) satisfies

Kijk=λ|i−j|+|i−k|+|j−k|,

in which λ= e−h/ε.
To eliminate the absolute value operator in K, we categorize the subscripts (i, j,k)

according to their orders into 6 sets‡

D1={(i, j,k) |1≤ i≤ j≤ k≤N}, D2={(i, j,k) |1≤ j< i≤ k≤N},

D3={(i, j,k) |1≤ i≤ k< j≤N}, D4={(i, j,k) |1≤ j≤ k< i≤N},

D5={(i, j,k) |1≤ k< i≤ j≤N}, D6={(i, j,k) |1≤ k< j< i≤N}.

(3.1)

Then, the element of tensor K has a simplified form of

Kijk =λapi+bp j+cpk, ∀(i, j,k)∈Dp, p=1,.. . ,6, (3.2)

where ap,bp, cp have specific values

a1=−2, a2 =0, a3 =−2, a4=2, a5 =0, a6 =2,

b1=0, b2=−2, b3=2, b4=−2, b5=2, b6=0,

c1=2, c2=2, c3=0, c4=0, c5=−2, c6=−2.

(3.3)

Similarly, C⊙K satisfies

(C⊙K)ijk =(api+bp j+cpk)hλap i+bp j+cpk, ∀(i, j,k)∈Dp, p=1,.. . ,6.

In this section, we first propose two fast implementations to accelerate the tensor-
vector products K×i φ×j ψ in Section 3.1 and (C⊙K)×i φ×j ψ in Section 3.2, achieving
a computation complexity ofO(N). Subsequently, we embed the fast tensor-vector prod-
uct into the Sinkhorn algorithm, proposing the fast Sinkhorn algorithm with linear com-
plexity for the MMOT problem in Section 3.3.

3.1 Fast tensor-vector product of K×i φ×j ψ

The tensor-vector product writes

(K×i φ×j ψ)k=
N

∑
i=1

N

∑
j=1

Kijkφiψj =
6

∑
p=1

Jk,p, k=1,2,.. . ,N, (3.4)

in which Jk,p are given by

Jk,1=
k

∑
i=1

k

∑
j=i

φiψjλ
a1 i+b1 j+c1k, Jk,2=

k−1

∑
j=1

k

∑
i=j+1

φiψjλ
a2i+b2 j+c2k, (3.5a)

‡For the l-marginal case, we need to categorize subscripts (i1,i2,··· ,il). Therefore, l! sets are required.
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Jk,3=
k

∑
i=1

N

∑
j=k+1

φiψjλ
a3i+b3 j+c3k, Jk,4=

k

∑
j=1

N

∑
i=k+1

φiψjλ
a4i+b4 j+c4k, (3.5b)

Jk,5=
N

∑
i=k+1

N

∑
j=i

φiψjλ
a5 i+b5 j+c5k, Jk,6=

N−1

∑
j=k+1

N

∑
i=j+1

φiψjλ
a6i+b6 j+c6k. (3.5c)

Directly computing Eq. (3.4) for all k=1,.. . ,N takesO(N3) operations. In fact, Jk,p satisfy
the recurrence relations

{

Jk,1 =λc1 Jk−1,1+ψkPk,1,

J1,1=φ1ψ1λa1+b1+c1 ,

{

Jk,2=λc2 Jk−1,2+φkPk−1,2,

J1,2=0,

Jk,3=Pk,3Qk+1,3, Jk,4 =Pk,4Qk+1,4,
{

Jk,5 =λ−c5 Jk+1,5+φk+1Pk+1,5,

JN,5=0,

{

Jk,6=λ−c6 Jk+1,6+ψk+1Pk+2,6,

JN,6=0, JN−1,6=0.

(3.6)

Here Pk,p and Qk,p have the forms of

Pk,1=λ(b1+c1)k
k

∑
i=1

φiλ
a1i, Pk,2=λa2(k+1)+c2(k+1)

k

∑
j=1

ψjλ
b2 j,

Pk,3=λ(b3+c3)k
k

∑
i=1

φiλ
a3i, Qk+1,3=λ−b3k

N

∑
j=k+1

ψjλ
b3 j,

Pk,4=λ(a4+c4)k
k

∑
j=1

ψjλ
b4 j, Qk+1,4=λ−a4k

N

∑
i=k+1

φiλ
a4i,

Pk,5=λa5k+c5(k−1)
N

∑
j=k

ψjλ
b5 j, Pk,6=λb6(k−1)+c6(k−2)

N

∑
i=k

φiλ
a6i,

(3.7)

which can be also computed in a recursive manner
{

Pk,1=λb1+c1 Pk−1,1+φkλ(a1+b1+c1)k,

P1,1=φ1λa1+b1+c1 ,

{

Pk,2=λa2+c2 Pk−1,2+ψkλa2(k+1)+b2k+c2(k+1),

P1,2=ψ1λ2a2+b2+2c2 ,

{

Pk,3=λb3+c3 Pk−1,3+φkλ(a3+b3+c3)k,

P1,3=φ1λa3+b3+c3 ,

{

Qk,3=λb3 Qk+1,3+ψkλb3 ,

QN,3=ψNλb3 ,

{

Pk,4=λa4+c4 Pk−1,4+ψkλ(a4+b4+c4)k,

P1,4=ψ1λa4+b4+c4 ,

{

Qk,4=λa4 Qk+1,4+φkλa4 ,

QN,4=φNλa4 ,

{

Pk,5=λ−a5−c5 Pk+1,5+ψkλa5k+b5k+c5(k−1),

PN,5=ψNλa5N+b5 N+c5(N−1),

{

Pk,6=λ−b6−c6 Pk+1,6+φkλa6k+b6(k−1)+c6(k−2),

PN,6=φNλa6 N+b6(N−1)+c6(N−2).

(3.8)
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The recurrence formulas (3.6) and (3.8) induce the fast tensor-vector product algorithm
(FTVP-1) to compute Eq. (3.4). The pseudo-code is presented in Algorithm 2, with O(N)
computation complexity specified in Table 1.

Algorithm 2. Fast Tensor-Vector Product-1 (FTVP-1).

Input: φ,ψ of size (N,1),λ.

Output: K×i φ×j ψ.
1: procedure FTVP-1(φ,ψ,λ)
2: J1, J2, J3, J4, J5, J6=0N , J1,1=φ1ψ1.

3: P1,P2,P3,P4,P5,P6, Q3, Q4=0N .

4: P1,1=φ1,P1,2=λ2ψ1,P1,3=φ1,QN,3=λ2ψN .

5: P1,4=ψ1,QN,4=λ2φN,PN,5=λ2ψN ,PN,6=λ4φN.

6: for k=1 : N−1 do

7: Pk+1,1=λ2Pk,1+φk+1.

8: Pk+1,2=λ2Pk,2+λ2ψk+1.

9: Pk+1,3=λ2Pk,3+φk+1.

10: QN−k,3=λ2QN−k+1,3+λ2ψN−k.

11: Pk+1,4=λ2Pk,4+ψk+1.

12: QN−k,4=λ2QN−k+1,4+λ2φN−k.

13: PN−k,5=λ2PN−k+1,5+λ2ψN−k.

14: PN−k,6=λ2PN−k+1,6+λ4φN−k.

15: for k=1 : N−1 do

16: Jk+1,1=λ2 Jk,1+ψk+1Pk+1,1.

17: Jk+1,2=λ2 Jk,2+φk+1Pk,2.

18: Jk,3=Pk,3Qk+1,3.

19: Jk,4=Pk,4Qk+1,4.

20: for k=N :−1 :2 do
21: Jk−1,5=λ2 Jk,5+φkPk,5.

22: for k=N−1 :−1 :2 do

23: Jk−1,6=λ2 Jk,6+ψkPk+1,6.

24: return J1+ J2+ J3+ J4+ J5+ J6.

Table 1: The number of multiplicative and additive operations in FTVP-1.

Pk,p Qk,p Jk,p J

Number of operations 18N 6N 14N 5N

Total 43N
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3.2 Fast tensor-vector product of (C⊙K)×i φ×j ψ

The tensor-vector product writes

(

(C⊙K)×i φ×j ψ
)

k
=

N

∑
i=1

N

∑
j=1

cijkKijkφiψj=h
6

∑
p=1

Ĵk,p, (3.9)

in which Ĵk,p for p=1,2,.. . ,6 are given by

Ĵk,1=
k

∑
i=1

k

∑
j=i

(a1i+b1 j+c1k)φiψjλ
a1 i+b1 j+c1k,

Ĵk,2=
k−1

∑
j=1

k

∑
i=j+1

(a2i+b2 j+c2k)φiψjλ
a2i+b2 j+c2k,

Ĵk,3=
k

∑
i=1

N

∑
j=k+1

(a3i+b3 j+c3k)φiψjλ
a3i+b3 j+c3k,

Ĵk,4=
k

∑
j=1

N

∑
i=k+1

(a4i+b4 j+c4k)φiψjλ
a4i+b4 j+c4k,

Ĵk,5=
N

∑
i=k+1

N

∑
j=i

(a5i+b5 j+c5k)φiψjλ
a5 i+b5 j+c5k,

Ĵk,6=
N

∑
j=k+1

N

∑
i=j+1

(a6i+b6 j+c6k)φiψjλ
a6i+b6 j+c6k.

(3.10)

Directly computing Eq. (3.9) for all k=1,.. . ,N takesO(N3) operations. In fact, Ĵk,p satisfy
the recurrence relations







Ĵk,1 =λc1( Ĵk−1,1+c1 Jk−1,1)+ψk

(

Rk,1+(b1+c1)kPk,1

)

,

Ĵ1,1=(a1+b1+c1)φ1ψ1λa1+b1+c1 ,






Ĵk,2 =λc2( Ĵk−1,2+c2 Jk−1,2)+φk

(

Rk−1,2+(a2+c2)kPk−1,2

)

,

Ĵ1,2=0,

Ĵk,3 =Rk,3Qk+1,3+Pk,3Sk+1,3+c3kJk,3,

Ĵk,4 =Rk,4Qk+1,4+Pk,4Sk+1,4+c4kJk,4,






Ĵk,5 =λ−c5( Ĵk+1,5−c5 Jk+1,5)+φk+1

(

Rk+1,5+
(

a5(k+1)+c5k
)

Pk+1,5

)

,

ĴN,5=0,






Ĵk,6 =λ−c6( Ĵk+1,6−c6 Jk+1,6)+ψk+1

(

Rk+2,6+
(

b6(k+1)+c6k
)

Pk+2,6

)

,

ĴN,6=0, ĴN−1,6=0.

(3.11)
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Here Jk,p, Pk,p, Qk,p are the same as those in Eqs. (3.5) and (3.7). Additionally, Rk,p and Sk,p

have the forms of

Rk,1=λ(b1+c1)k
k

∑
i=1

a1iφiλ
a1i, Rk,2=λ(a2+c2)(k+1)

k

∑
j=1

b2 jψjλ
b2 j,

Rk,3=λ(b3+c3)k
k

∑
i=1

a3iφiλ
a3i, Sk+1,3=λ−b3k

N

∑
j=k+1

b3 jψjλ
b3 j,

Rk,4=λ(a4+c4)k
k

∑
j=1

b4 jψjλ
b4i, Sk+1,4=λ−a4k

N

∑
i=k+1

a4iφiλ
a4i,

Rk,5=λa5k+c5(k−1)
N

∑
j=k

b5 jψjλ
b5 j, Rk,6=λb6(k−1)+c6(k−2)

N

∑
i=k

a6iφiλ
a6i,

(3.12)

which can also be computed in a recursive manner

{

Rk,1=λb1+c1 Rk−1,1+a1kφkλ(a1+b1+c1)k,

R1,1= a1φ1λa1+b1+c1 ,











Rk,2=λa2+c2 Rk−1,2

+b2kψkλa2(k+1)+b2k+c2(k+1),

0.5ex]R1,2 =b2ψ1λ2a2+b2+2c2 ,

{

Rk,3=λb3+c3 Rk−1,3+a3kφkλ(a3+b3+c3)k,

0.5ex]R1,3 = a3φ1λa3+b3+c3 ,

{

Sk,3=λb3 Sk+1,3+b3kψkλb3 ,

0.5ex]SN,3=b3NψNλb3 ,

{

Rk,4=λa4+c4 Rk−1,4+b4kψkλ(a4+b4+c4)k,

0.5ex]R1,4 =b4ψ1λa4+b4+c4 ,

{

Sk,4=λa4 Sk+1,4+a4kφkλa4 ,

0.5ex] SN,4= a4NφNλa4 ,











Rk,5=λ−a5−c5 Rk+1,5

+b5kψkλa5k+b5k+c5(k−1),

0.5ex]RN,5=b5ψNλa5 N+b5N+c5(N−1),











Rk,6=λ−b6−c6 Rk+1,6

+a6kφkλa6k+b6(k−1)+c6(k−2),

0.5ex] RN,6= a6φNλa6 N+b6(N−1)+c6(N−2).

(3.13)
The recurrence formulas (3.11) and (3.13) induce the fast tensor-vector product algo-

rithm (FTVP-2) to compute Eq. (3.9). The pseudo-code is presented in Algorithm 3, with
O(N) computation complexity specified in Table 2.

Table 2: The number of multiplicative and additive operations in FTVP-2.

Pk,p Qk,p Jk,p Rk,p Sk,p Ĵk,p Ĵ

Number of operations 18N 6N 14N 24N 8N 38N 5N

Total 113N
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Algorithm 3. Fast Tensor-Vector Product-2 (FTVP-2).

Input: φ,ψ of size (N,1),λ,h.

Output: (C⊙K)×i φ×j ψ.
1: procedure FTVP-2(φ,ψ,λ)
2: Ĵ1, Ĵ2, Ĵ3, Ĵ4, Ĵ5, Ĵ6=0N .

3: R1, R2,R3, R4, R5, R6,S3,S4=0N .

4: R1,1=−2φ1, R1,2=−2λ2ψ1, R1,3=−2φ1,SN,3=2Nλ2ψN .

5: R1,4=−2ψ1,SN,4=2Nλ2φN , RN,5=2λ2ψN , RN,6=2λ4φN.
6: for k=1 : N−1 do

7: Rk+1,1=λ2Rk,1−2(k+1)φk+1.

8: Rk+1,2=λ2Rk,2−2(k+1)λ2ψk+1.

9: Rk+1,3=λ2Rk,3−2(k+1)φk+1.

10: SN−k,3=λ2SN−k+1,3+2(N−k)λ2ψN−k.

11: Rk+1,4=λ2Rk,4−2(k+1)ψk+1.

12: SN−k,4=λ2SN−k+1,4+2(N−k)λ2φN−k.

13: RN−k,5=λ2RN−k+1,5+2(N−k)λ2ψN−k.

14: RN−k,6=λ2RN−k+1,6+2(N−k)λ4φN−k.

15: for k=1 : N−1 do

16: Ĵk+1,1=λ2 Ĵk,1+2λ2 Jk,1+ψk+1Rk+1,1+2(k+1)ψk+1Pk+1,1.

17: Ĵk+1,2=λ2 Ĵk,2+2λ2 Jk,2+φk+1Rk,2+2(k+1)φk+1Pk,2.

18: Ĵk,3 =Rk,3Qk+1,3+Pk,3Sk+1,3.

19: Ĵk,4 =Rk,4Qk+1,4+Pk,4Sk+1,4.

20: for k=N :−1 :2 do

21: Ĵk−1,5=λ2 Ĵk,5+2λ2 Jk,5+φkRk,5−2(k−1)φkPk,5.

22: for k=N−1 :−1 :2 do

23: Ĵk−1,6=λ2 Ĵk,6+2λ2 Jk,6+ψkRk+1,6−2(k−1)ψk Pk+1,6.

24: return h( Ĵ1+ Ĵ2+ Ĵ3+ Ĵ4+ Ĵ5+ Ĵ6).

3.3 Algorithm implementation

The major computational burden of the generalized Sinkhorn algorithm (Algorithm 1)
lies in the tensor-vector products related to K in lines 4-7 and that related to C⊙K in
line 8. Here we propose a step-by-step approach to reduce the computational complexity
from O(N3) to O(N):

• K×j ψ×kϕ in lines 4 and 7: We define K̃=(K̃ijk) satisfying K̃ijk =Kkij =λbpi+cp j+apk,
∀(i, j,k)∈Dp. Then it can be verified that

K×j ψ×kϕ= K̃×i ψ×jϕ,
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which can be computed with O(N) computational cost according to the discussion
in Section 3.1, because K̃ has the similar form of Eq. (3.2);

• K×i φ×kϕ in lines 5 and 7: We can apply the same technique as used above to
reduce the complexity to O(N);

• K×i φ×j ψ in line 6: According to Algorithm 2, the complexity can be reduced to
O(N);

• (C⊙K)×iφ×jψ in line 8: According to Algorithm 3, the complexity can be reduced
to O(N).

Based on the above discussions, we successfully accelerate the generalized Sinkhorn
algorithm and propose a fast Sinkhorn algorithm with O(N) computational complexity.
The pseudo-code is presented in Algorithm 4.

Algorithm 4. The Algorithm for MMOT with Linear Complexity.

Input: u,v,w of size (N,1), ε, tol, itr max.

Output: Wǫ(u,v,w).

1: Initialize φ,ψ,ϕ=1N/N, t=0,Res= Inf.
2: while (t< itr max) & (Res> tol) do

3: t← t+1.

4: φ←u⊘FTVP-1(ψ,ϕ,λ).

5: ψ←v⊘FTVP-1(φ,ϕ,λ).

6: ϕ←w⊘FTVP-1(φ,ψ,λ).

7: Res←sum(|φ⊙FTVP-1(ψ,ϕ,λ)−u |+ |ψ⊙FTVP-1(φ,ϕ,λ)−v |).

8: return Wǫ(u,v,w)=h〈ϕ,FTVP-2(φ,ψ,λ)〉.

The log-domain stabilization can also be aggregated into the fast tensor-vector prod-
uct algorithm. The key point is to accelerate the tensor-vector products related to the

rescaled tensor K̂= (e(αi+β j+γk)/εKijk), which can be achieved by modifying the update
formulas of Pk,p, Qk,p, Jk,p in FTVP-1. The pseudo-code is presented in Algorithm 5.

4 Various generalization

In this section, we aim to extend the capabilities of our algorithm to higher dimensions
and more margins.

4.1 High dimension generalization

In this subsection, we consider the two-dimensional case of our algorithm as an exam-
ple, noting that its generalization to three or higher dimensions follows a similar ap-
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Algorithm 5. Fast Tensor-Vector Product with log-Domain Stabilization (FTVP-LOG).

Input: φ,ψ of size (N,1),λ.

Output: K̂×i φ×j ψ.
1: procedure FTVP-1(φ,ψ,λ)
2: J1, J2, J3, J4, J5, J6=0N , J1,1=φ1ψ1.

3: P1,P2,P3,P4,P5,P6, Q3, Q4=0N .

4: P1,1=φ1, P1,2=λ2ψ1, P1,3=φ1, QN,3=λ2ψN .

5: P1,4=ψ1, QN,4=λ2φN , PN,5=λ2ψN, PN,6=λ4φN .
6: for k=1 : N−1 do

7: Pk+1,1=λ2e(αk−αk+1)/εPk,1+φk+1.

8: Pk+1,2=λ2e(βk−βk+1)/εPk,2+λ2ψk+1.

9: Pk+1,3=λ2e(αk−αk+1)/εPk,3+φk+1.

10: QN−k,3=λ2e(βN−k+1−βN−k)/εQN−k+1,4+λ2ψN−k.

11: Pk+1,4=λ2e(βk−βk+1)/εPk,2+ψk+1.

12: QN−k,4=λ2e(αN−k+1−αN−k)/εQN−k+1,4+λ2φN−k.

13: PN−k,5=λ2e(αN−k+1−αN−k)/εPN−k+1,5+λ2ψN−k.

14: PN−k,6=λ2e(βN−k+1−βN−k)/εPN−k+1,6+λ4φN−k.

15: for k=1 : N−1 do

16: Jk+1,1=λ2e(γk+1−γk)/ε Jk,1+ψk+1e(αk+1+βk+1+γk+1)/εPk+1,1.

17: Jk+1,2=λ2e(γk+1−γk)ε Jk,2+φk+1e(αk+1+βk+γk+1)εPk,2.

18: Jk,3 = e(αk+βk+1+γk)/εPk,3Qk+1,3.

19: Jk,4 = e(αk+1+βk+γk)εPk,4Qk+1,4.

20: for k=N :−1 :2 do

21: Jk−1,5=λ2e(γk−1−γk)/ε Jk,5+φke(αk+βk+γk−1)/εPk,5.

22: for k=N−1 :−1 :2 do

23: Jk−1,6=λ2e(γk−1−γk)/ε Jk,6+ψke(αk+1+βk+γk−1)/εPk+1,6.

24: return J1+ J2+ J3+ J4+ J5+ J6.

proach with no fundamental distinction. Similar to Section 2, we consider the discrete
two-dimensional MMOT problem, which solves the following minimization problem:

W(u,v,w)= inf
T ∈Π
〈C,T 〉= inf

T ∈Π

N1

∑
i1=1

M1

∑
i2=1

N2

∑
j1=1

M2

∑
j2=1

N3

∑
k1=1

M3

∑
k2=1

ci1i2 j1 j2k1k2
ti1 i2 j1 j2k1k2

. (4.1)

Here

C=(ci1i2 j1 j2k1k2
)∈R

N1M1×N2M2×N3M3

is the cost tensor, and
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T =(ti1i2 j1 j2k1k2
)∈R

N1 M1×N2M2×N3M3
0+

is the multi-marginal transport plan, satisfying the linear constraints

T ∈Π=

{

T =(ti1 i2 j1 j2k1k2
)
∣

∣ ti1 i2 j1 j2k1k2
≥0,

N2

∑
j1=1

M2

∑
j2=1

N3

∑
k1=1

M3

∑
k2=1

ti1i2 j1 j2k1k2
=ui1i2 ,

N1

∑
i1=1

M1

∑
i2=1

N3

∑
k1=1

M3

∑
k2=1

ti1i2 j1 j2k1k2
=vj1 j2 ,

N1

∑
i1=1

M1

∑
i2=1

N2

∑
j1=1

M2

∑
j2=1

ti1i2 j1 j2k1k2
=wk1k2

}

. (4.2)

Similar to the discussion in Section 2, our discussion is suitable for any N1, M1, N2,
M2, N3 and M3. For the sake of simplicity, we assume N1 =N2 =N3 =N and M1 = M2 =
M3 = M in the rest of the paper. Similar to the entropic regularization technique intro-
duced in Section 2, we consider the following regularized MMOT problem:

Wǫ(u,v,w)= inf
T ∈Π

N

∑
i1,j1 ,k1=1

M

∑
i2,j2,k2=1

ci1i2 j1 j2k1k2
ti1i2 j1 j2k1k2

+εti1 i2 j1 j2k1k2
ln(ti1i2 j1 j2k1k2

).

Based on analogous derivation, the above problem achieves optimum when scaling vari-
ables φ=(φi1i2),ψ=(ψj1 j2),ϕ=(ϕk1k2

)∈R
NM satisfy

φ⊙(K×j1 j2 ψ×k1k2
ϕ)=u, (4.3)

ψ⊙(K×i1 i2 φ×k1k2
ϕ)=v, (4.4)

ϕ⊙(K×i1 i2 φ×j1 j2 ψ)=w, (4.5)

in which the tensor-vector products write

(K×j1 j2 ψ×k1k2
ϕ)i1i2 =

N

∑
j1 ,k1=1

M

∑
j2,k2=1

Ki1i2 j1 j2k1k2
ψj1 j2 ϕk1k2

, (4.6)

(K×i1i2 φ×k1k2
ϕ)j1 j2 =

N

∑
i1,k1=1

M

∑
i2,k2=1

Ki1i2 j1 j2k1k2
φi1i2 ϕk1k2

, (4.7)

(K×i1i2 φ×j1 j2 ψ)k1k2
=

N

∑
i1,j1=1

M

∑
i2,j2=1

Ki1i2 j1 j2k1k2
φi1i2ψj1 j2 . (4.8)

The optimal transport plan is given by

ti1 i2 j1 j2k1k2
=φi1i2 ψj1 j2 ϕk1k2

Ki1i2 j1 j2k1k2
,

and the optimal transport distance is

Wǫ(u,v,w)=
N

∑
i1,j1 ,k1=1

M

∑
i2,j2,k2=1

ci1i2 j1 j2k1k2
φi1i2 ψj1 j2 ϕk1k2

Ki1i2 j1 j2k1k2

= 〈ϕ,(C⊙K)×i1i2 φ×j1 j2 ψ〉. (4.9)
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Here, the cost tensor C=(ci1i2 j1 j2k1k2
)∈R

NM×NM×NM based on the L1 norm of a uniform
2D mesh with a vertical spacing of h1 and a horizontal spacing of h2 writes

ci1i2 j1 j2k1k2
=(|i1− j1|+|i1−k1|+|j1−k1|)h1+(|i2− j2|+|i2−k2|+|j2−k2|)h2,

and the corresponding kernel tensor K=(Ki1i2 j1 j2k1k2
)∈R

NM×NM×NM writes

Ki1i2 j1 j2k1k2
=λ

|i1−j1|+|i1−k1|+|j1−k1|
1 λ

|i2−j2 |+|i2−k2|+|j2−k2|
2 ,

where λ1= e−h1/ε and λ2= e−h2/ε. The generalized Sinkhorn algorithm can be applied to
calculate (φ,ψ,ϕ) by iteratively updating

φ(t+1)=u⊘
(

K×j1 j2 ψ(t)×k1k2
ϕ(t)

)

, (4.10)

ψ(t+1)=v⊘
(

K×i1i2 φ(t+1)×k1k2
ϕ(t)

)

, (4.11)

ϕ(t+1)=w⊘
(

K×i1i2 φ(t+1)×j1 j2 ψ(t+1)
)

. (4.12)

Similar to the discussion of our algorithm for the 1D problem in Section 3, the bot-
tleneck of computational efficiency arises from the tensor-vector products, such as J =
K×i1i2 φ×j1 j2 ψ, whose element satisfies

Jk1k2
=

N

∑
i1,j1=1

M

∑
i2,j2=1

λ
|i1−j1|+|i1−k1|+|j1−k1|
1 λ

|i2−j2|+|i2−k2|+|j2−k2|
2 φi1i2 ψj1 j2 . (4.13)

Obviously, directly calculating this tensor-vector product requires O(N3 M3) operations,
which is an unacceptable computational cost. Now, we delve into a detailed discussion
on reducing the computational cost to O(NM).

First, φ,ψ, J∈R
NM are flattened into 1D vectors in column-major order

φ=(φ1,φ2,··· ,φM), ψ=(ψ1,ψ2,··· ,ψM), J=(J1, J2,··· , JM),

in which the sub-vectors φi2
,ψj2

, Jk2
∈R

N are

φi2
=(φ1i2 ,φ2i2 ,··· ,φNi2), ψj2

=(ψ1j2 ,ψ2j2 ,··· ,ψNj2), Jk2
=(J1k2

, J2k2
,··· , JNk2

).

By defining a tensor KN =(Ki1 j1k1,N)∈R
N×N×N with the element

Ki1 j1k1,N =λ
|i1−j1|+|i1−k1|+|j1−k1|
1 ,

the Eq. (4.13) can be rewritten in vector form as

Jk2
=

M

∑
i2=1

M

∑
j2=1

λ
|i2−j2 |+|i2−k2|+|j2−k2|
2 (KN×i1 φi2

×j1 ψj2
).
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We use the same technique in Section 3 to eliminate the absolute value operation above,
separating the summations into 6 components according to the order of subscripts

Jk2
=

6

∑
p=1

Jk2,p,

each of which has a simple form of

Jk2,1=
k2

∑
i2=1

k2

∑
j2=i2

λ
2(k2−i2)
2 (KN×i1 φi2

×j1 ψj2
),

Jk2,2=
k2−1

∑
j2=1

k2

∑
i2=j2+1

λ
2(k2−j2)
2 (KN×i1 φi2

×j1 ψj2
),

Jk2,3=
k2

∑
i2=1

M

∑
j2=k2+1

λ
2(j2−i2)
2 (KN×i1 φi2

×j1 ψj2
),

Jk2,4=
k2

∑
j2=1

M

∑
i2=k2+1

λ
2(i2−j2)
2 (KN×i1 φi2

×j1 ψj2
),

Jk2,5=
M

∑
i2=k2+1

M

∑
j2=i2

λ
2(j2−k2)
2 (KN×i1 φi2

×j1 ψj2
),

Jk2,6=
M−1

∑
j2=k2+1

M

∑
i2=j2+1

λ
2(i2−k2)
2 (KN×i1 φi2

×j1 ψj2
).

(4.14)

In fact, Jk2,p satisfy the recurrence relations

{

Jk2,1=λ2
2 Jk2−1,1+KN×i1 Pk2,1×j1 ψk2

,

J1,1=KN×i1 φ1×j1 ψ1,

{

Jk2,2=λ2
2 Jk2−1,2+KN×i1 φk2

×j1 Pk2−1,2,

J1,2=0,

Jk2 ,3=KN×i1 Pk2 ,3×j1 Qk2+1,3, Jk2,4=KN×i1 Qk2+1,4×j1 Pk2,4,

{

Jk2−1,5=λ2
2 Jk2,5+KN×i1 φk2

×j1 Pk2,5,

JM,5=0,

{

Jk2−1,6=λ2
2 Jk2,6+KN×i1 Pk2+1,6×j1 ψk2

,

JM,6=0, JM−1,6=0.

Here Pk2,p,Qk2,p∈R
N have the forms of

Pk2,1=
k2

∑
i2=1

λ
2(k2−i2)
2 φi2

, Pk2,2=
k2

∑
j2=1

λ
2(k2−j2+1)
2 ψj2

,

Pk2,3=
k2

∑
i2=1

λ
2(k2−i2)
2 φi2

, Qk2,3=
M

∑
j2=k2

λ
2(j2−k2+1)
2 ψj2

,
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Pk2,4=
k2

∑
j2=1

λ
2(k2−j2)
2 ψj2

, Qk2,4=
M

∑
i2=k2

λ
2(i2−k2+1)
2 φi2

Pk2,5=
M

∑
j2=k2

λ
2(j2−k2+1)
2 ψj2

, Pk2,6=
M

∑
i2=k2

λ
2(i2−k2+2)
2 φi2

,

which can also be computed in a recursive manner
{

Pk2,1=λ2
2Pk2−1,1+φk2

,

P1,1=φ1,

{

Pk2,2=λ2
2Pk2−1,2+λ2

2ψk2
,

P1,2=λ2
2ψ1,

{

Pk2,3=λ2
2Pk2−1,3+φk2

,

P1,3=φ1,

{

Qk2,3=λ2
2Qk2+1,3+λ2

2ψk2
,

QM,3=λ2
2ψM,

{

Pk2,4=λ2
2Pk2−1,4+ψk2

,

P1,4=ψ1,

{

Qk2,4=λ2
2Qk2+1,4+λ2

2φk2
,

QM,4=λ2
2φM,

{

Pk2,5=λ2
2Pk2+1,5+λ2

2ψk2
,

PM,5=λ2
2ψM,

{

Pk2,6=λ2
2Pk2+1,6+λ4

2φk2
,

PM,6=λ4
2φM.

The pseudo-code of the implementation above is presented in Algorithm 6, withO(MN)
computational complexity. Similar idea can be naturally applied to accelerate the tensor-
vector product (C⊙K)×i1i2 φ×j1 j2 ψ in Eq. (4.9), and so are omitted.

The above technique can be naturally extended to the d-dimensional case. Next, we
discuss the number of addition and multiplication operations for d dimensional MMOT
problem. Let the number of additions required in d-dimensional space be denoted as
NAd, and the number of multiplications as NMd. Without loss of generality, assuming
that the grid size N is the same across all dimensions, we obtain the following recurrence
relation:

NAd=(6NAd−1+17)N, NA1=17N,

NMd=(6NMd−1+20)N, NM1=26N,

From this, we can further derive the expression for the number of operations in an ar-
bitrary d-dimensional space, as summarized in Table 3. Meanwhile, the above discussion
applies analogously to the tensor product (C⊙K)×i1i2 φ×j1 j2 ψ summarized in Table 4 as
well.

4.2 l-marginal generalization

In this subsection, we extend our algorithm to solve general l-marginal optimal transport
problems. For ease of exposition, we focus on one-dimensional probabilistic distribu-
tion on a uniform mesh with a grid spacing of h. Its generalization to high-dimensional
distributions follows an analogous approach as discussed in Section 4.1.
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Algorithm 6. Fast Tensor-Vector Product for 2D MMOT.

Input: φ,ψ of size (N×M),λ1,λ2.

Output: K×i φ×j ψ.
1: procedure FTVP 2D(φ,ψ,λ1,λ2)
2: J1,1=FTVP-1(φ1,ψ1,λ1), J1,2, J1,3, J1,4, J1,5, J1,6=0N .

3: P1,1=φ1,P1,2=λ2
2ψ1,P1,3=φ1,QM,3=λ2

2ψM.

4: P1,4=ψ1, QM,4=λ2
2φM,PM,5=λ2

2ψM,PM,6=λ4
2φM.

5: for k=1 : M−1 do

6: Pk+1,1=λ2
2Pk,1+φk+1.

7: Pk+1,2=λ2
2Pk,2+λ2

2ψk+1.

8: Pk+1,3=λ2
2Pk,3+φk+1.

9: QM−k,3=λ2
2QM−k+1,3+λ2

2ψM−k.

10: Pk+1,4=λ2
2Pk,4+ψk+1.

11: QM−k,4=λ2
2QM−k+1,4+λ2

2φM−k.

12: PM−k,5=λ2
2PM−k+1,5+λ2

2ψM−k.

13: PM−k,6=λ2
2PM−k+1,6+λ4

2φM−k.

14: for k=1 : M−1 do

15: Jk+1,1=λ2
2Jk,1+FTVP-1(Pk+1,1,ψk+1,λ1).

16: Jk+1,2=λ2
2Jk,2+FTVP-1(φk+1,Pk,2,λ1).

17: Jk,3=FTVP-1(Pk,3,Qk+1,3,λ1).

18: Jk,4=FTVP-1(Qk+1,4,Pk,4,λ1).

19: for k=M :−1 :2 do

20: Jk−1,5=λ2
2Jk,5+FTVP-1(φk,Pk,5,λ1).

21: for k=M−1 :−1 :2 do

22: Jk−1,6=λ2
2Jk,6+FTVP-1(Pk+1,6,ψk,λ1).

23: for k=1 : M do

24: Jk= Jk,1+ Jk,2+ Jk,3+ Jk,4+ Jk,5+ Jk,6.

25: return (J1, J2,··· , JM)

Table 3: The number of additive (NA) and multiplicative (NM) operations required for K×i1i2···id
φ×j1 j2···jd

ψ.

Dimension d NA NM Total

d=1 17N 26N 43N

d=2 119N2 176N2 295N2

d

(

17

5
×6d−

17

5

)

Nd (5×6d−4)Nd

(

42

5
×6d−

37

5

)

Nd
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Table 4: The number of additive and multiplicative operations required for (C⊙K)×i1i2···id
φ×j1 j2···jd

ψ.

Dimension d NA NM Total

d=1 41N 72N 113N

d=2 615N2 1066N2 1681N2

d

(

41

13
×14d−

41

13

)

Nd

(

71

13
×14d−

58

13

)

Nd

(

112

13
×14d−

99

13

)

Nd

Given l discrete distributions u1,u2,··· ,ul, where uj=(uj,1,uj,2,··· ,uj,Nj
)∈R

Nj , the dis-
crete l-marginal optimal transport problem [6] is formulated as

W(u1,u2,··· ,ul)= inf
T ∈Π
〈C,T 〉= inf

T ∈Π

N1

∑
i1=1

N2

∑
i2=1

···
Nl

∑
il=1

ci1i2···il
ti1i2···il

. (4.15)

Here, C = (ci1i2···il
) ∈R

N1×N2×···×Nl is the l-th order cost tensor, and the L1 norm based
pairwise-interaction cost is

ci1i2···il
= ∑

1≤p<q≤l

|ip−iq|h.

The collection of all admissible multi-marginal transport plan T =(ti1 i2···il
)∈R

N1×N2×···×Nl
0+

is given by

Π=

{

T =(ti1 i2···il
) | ti1 i2···il

≥0,
N1

∑
i1=1

···
Nj−1

∑
ij−1=1

Nj+1

∑
ij+1=1

···
Nl

∑
il=1

ti1i2···il
=uj,ij

, ∀j=1,2,.. . ,l

}

. (4.16)

Without loss of generality, we assume Nj=N for all j=1,2,.. . ,l. By introducing the en-
tropic regularization technique, the optimal transport plan T =(ti1 i2···il

) of the regularized
l-marginal optimal transport problem

Wε(u1,u2,··· ,ul)= inf
T ∈Π

N

∑
i1=1

N

∑
i2=1

···
N

∑
il=1

ci1i2···il
ti1 i2···il

+εti1i2···il
ln(ti1i2···il

),

writes
ti1i2···il

=φ1,i1φ2,i2 ···φl,il
Ki1i2···il

, ∀1≤ i1,i2,··· ,il≤N. (4.17)

Here, φl =(φl,il
)∈R

N
0+ denotes the l-th scaling variables, and the corresponding kernel

tensor K=(Ki1i2···il
)∈R

N l
is defined as

Ki1i2···il
=λ∑1≤p<q≤l |ip−iq |, λ= e−

h
ε .

By substituting (4.17) into the marginal constraint (4.16), the optimality condition (2.5)
for the 3-marginal optimal transport problem can be analogously extended to general
l-marginal cases, which is

φj⊙(K×i1 φ1 ···×ij−1
φj−1×ij+1

φj+1 ···×il
φl)=uj, j=1,2,.. . ,l. (4.18)
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The element of the above tensor-vector product has the form of

(K×i1 φ1 ···×ij−1
φj−1×ij+1

φj+1 ···×il
φl)ij

=
N

∑
i1=1

···
N

∑
ij−1=1

N

∑
ij+1=1

···
N

∑
il=1

Ki1i2···il
φ1,i1 ···φj−1,ij−1

φj+1,ij+1
···φl,il

. (4.19)

Hence, the corresponding Sinkhorn iteration scheme to find φj writes

φ
(t+1)
1 =u1⊘

(

K×i2 φ
(t)
2 ×i3 φ

(t)
3 ···×il

φ
(t)
l

)

, (4.20)

φ
(t+1)
2 =u2⊘

(

K×i1 φ
(t+1)
1 ×i3 φ

(t)
3 ···×il

φ
(t)
l

)

, (4.21)

...

φ
(t+1)
l =ul⊘

(

K×i1 φ
(t+1)
1 ×i2 φ

(t+1)
2 ···×il−1

φ
(t+1)
l−1

)

, (4.22)

and the l-marginal optimal transport distance is given by

Wǫ(u1,u2,··· ,ul)=
N

∑
i1=1

N

∑
i2=1

···
N

∑
il=1

ci1i2···il
φ1,i1φ2,i2 ···φl,il

Ki1i2···il

= 〈φl ,(C⊙K)×i1 φ1×i2 φ2 ···×il−1
φl−1〉. (4.23)

Similar to the discussion of l=3 in Section 3, the bottleneck of computational efficiency
for the l-marginal optimal transport problem lies in the tensor-vector products

J(l)=K×i1 φ1×i2 φ2 ···×il−1
φl−1, (4.24)

Ĵ
(l)
=(C⊙K)×i1 φ1×i2 φ2 ···×il−1

φl−1,, (4.25)

where the superscript (l) indicates the l-marginals. The elements of J(l)=(J
(l)
il
) and Ĵ

(l)
=

( Ĵ
(l)
il
) have the forms of

J
(l)
il

=
N

∑
i1=1

···
N

∑
il−1=1

λ∑1≤p<q≤l |ip−iq|
l−1

∏
q=1

φq,iq
, (4.26)

and

Ĵ
(l)
il

=h
N

∑
i1=1

···
N

∑
il−1=1

(

∑
1≤p<q≤l

|ip−iq|

)

λ∑1≤p<q≤l |ip−iq|
l−1

∏
q=1

φq,iq
. (4.27)

Obviously, the direct calculations requireO(Nl) operations, which are unacceptable com-
putational costs. We show as follows how to accelerate the tensor-vector products to
linear computational complexity relative to support size N.
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To start, we eliminate the absolute value operation in Eqs. (4.26) and (4.27) by sepa-
rating the summations into l! components according to the order of subscripts

J(l)=
l!

∑
p=1

J
(l)
p , Ĵ

(l)
=h

l!

∑
p=1

Ĵ
(l)
p , (4.28)

in which the elements of J
(l)
p =(J

(l)
il ,p

) and Ĵ
(l)
p =( Ĵ

(l)
il ,p

) write

J
(l)
il ,p

= ∑
(i1,···,il)∈Dp

(

λαk,pil

l−1

∏
q=1

φq,iq
λαq,piq

)

, (4.29)

and

Ĵ
(l)
il ,p

= ∑
(i1,···,il)∈Dp

(

al,pil+
l−1

∑
q=1

aq,piq

)(

λαl,pil

l−1

∏
q=1

φq,iq
λαq,piq

)

. (4.30)

Here, Dp are the sets defined by the order of subscripts

D1={(i1,··· ,il) |1≤ i1≤ i2≤···≤ il≤N},

D2={(i1,··· ,il) |1≤ i2 < i1≤···≤ il≤N},

...

Dl!={(i1,··· ,il) |1≤ il < il−1< ···< i1≤N}.

(4.31)

We first consider the calculation of J
(l)
p =(J

(l)
il ,p

) and Ĵ
(l)
p =( Ĵ

(l)
il ,p

) for the case of p=1. It

is straightforward to show that

J
(l)
il ,1

= ∑
1≤i1≤···≤il−1≤il

(

λαl,1il

l−1

∏
q=1

φq,iq
λαq,1iq

)

=λαl,1 J
(l)
il−1,1+φl−1,il

J
(l−1)
il ,1

, (4.32)

in which

J
(l−1)
il ,1

= ∑
1≤i1≤···≤il−2≤il

(

λ(αl−1,1+αl,1)il

l−2

∏
q=1

φq,iq
λαq,1iq

)

.

The above formula suggests that to compute J
(l)
1 =(J

(l)
il ,1

) in the l-marginal case, only 2N

multiplications and N additions are required, provided that J
(l−1)
1 =(J

(l−1)
il−1,1 ) has been ob-

tained in the (l−1)-marginal case. This recursive process with respect to l can be iterated

until reaching J
(3)
1 =(J

(3)
i3,1) in the 3-marginal case, enabling J

(l)
1 to be computed with O(N)

operations.
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Similarly, Ĵ
(l)
il ,1

satisfy

Ĵ
(l)
il ,1

= ∑
1≤i1≤···≤il−1≤il

(

αl,1il+
l−1

∑
q=1

αq,1iq

)(

λαl,1il

l−1

∏
q=1

φq,iq
λαq,1iq

)

=λαl,1 Ĵ
(l)
il−1,1+φl−1,il

Ĵ
(l−1)
il ,1

+αl,1λαl,1 J
(l)
il−1,1+αl,1φl−1,il

J
(l−1)
il ,1

=λαl,1
(

Ĵ
(l)
il−1,1+αl,1 J

(l)
il−1,1

)

+φl−1,il

(

Ĵ
(l−1)
il ,1

+αl,1 J
(l−1)
il ,1

)

, (4.33)

in which

Ĵ
(l−1)
il ,1

= ∑
1≤i1≤···≤il−2≤il

(

αl−1,1il+
l−2

∑
q=1

αq,1iq

)(

λ(αl−1,1+αl,1)il

l−2

∏
q=1

φq,iq
λαq,1iq

)

.

Note that, in (4.33), both of the computational complexity of J
(l)
1 and J

(l−1)
1 are O(N).

Therefore, to compute Ĵ
(l)
1 =( Ĵ

(l)
il ,1

) in the l-marginal case, only 3N additions and 4N mul-

tiplications are required if Ĵ
(l−1)
1 =( Ĵ

(l−1)
il−1,1 ) in the (l−1)-marginal case has been obtained.

This recursive process with respect to l can be iterated until reaching Ĵ
(3)
1 =( Ĵ

(3)
i3 ,1) in the

3-marginal case, thereby enabling the calculation of Ĵ
(l)
1 with O(N) operations.

Similar recursive processes of O(N) cost can be straightforwardly applied to the cal-

culation of other J
(l)
p and Ĵ

(l)
p and hence are not included here. So far, the tensor-vector

products (4.24) and (4.25) can both be calculated with linear computational complexity
relative to support size N.

4.2.1 Addition and multiplication counts

In this section, we count the addition and multiplication operations of the fast tensor-

vector products for the l-marginal case. We consider the calculation of J(l) and Ĵ
(l)

, which

involves the calculation of all J
(l)
p (4.29), Ĵ

(l)
p (4.30), and the summations (4.28). Since

p= 1,.. . ,l!, the summation requires (l!−1)N additions. Depending on the value of il in
Dp, there are three situations:

• Situation 1: Dp in which il is the maximum among i1,··· ,il , given by a general form
of

Dp={(i1,··· ,il) |1≤ iσ1
≤···≤ iσl−1

≤ il≤N},

for instance D1. Here (σ1,σ2,··· ,σl−1) is a permutation of (1,2,.. . ,l−1), and ≤ may

be replaced by < depending on the definition (4.31). Then J
(l)
p has a general form of

J
(l)
il ,p

= ∑
1≤iσ1

≤···≤iσl−1
≤il

(

λαl,pil

l−1

∏
q=1

φσq,iσq
λασq ,piσq

)

. (4.34)
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By using D1 as an example, Eq. (4.32) indicates that only N additions and 2N mul-

tiplications are required to compute J
(l)
1 = (J

(l)
il ,1

) in the l-marginal case, provided

that J
(l−1)
1 =(J

(l−1)
il−1,1 ) has been obtained in the (l−1)-marginal case. It means that, in

this situation, J
(l)
il ,p

can be computed with (l−1)N additions and (2l−2)N multipli-

cations. Since the permutation (σ1,σ2,··· ,σl−1) has (l−1)! arrangements, totally it
requires (l−1)!(l−1)N additions and (l−1)!(2l−2)N multiplications to calculate

all J
(l)
p in this situation.

Additionally, Ĵ p has a general form of

Ĵ
(l)
il ,p

= ∑
1≤iσ1

≤···≤iσl−1
≤il

(

αl,pil+
l−1

∑
q=1

ασq,piσq

)(

λαl,pil

l−1

∏
q=1

φσq,iσq
λασq ,piσq

)

. (4.35)

By using D1 as an example, Eq. (4.33) indicates that only 3N additions and 4N mul-

tiplications are required to compute Ĵ
(l)
1 = ( Ĵ

(l)
il ,1

) in the l-marginal case, provided

that Ĵ
(l−1)
1 =( Ĵ

(l−1)
il−1,1 ) in the (l−1)-marginal case, J

(l)
p and J

(l−1)
p have been obtained.

It requires 1N additions and 3N multiplications to compute Ĵ
(2)
1 . Thus, in this situ-

ation, Ĵ
(l)
il ,p

can be computed with (3l−5)N additions and (4l−5)N multiplications.

Except for the calculation of J
(l)
p , it requires additional (l−1)!(3l−5)N additions

and (l−1)!(4l−5)N multiplications to calculate all Ĵ
(l)
p in this situation.

• Situation 2: Dp in which il is the minimum among i1,··· ,il , given by a general form
of

Dp={(i1,··· ,il) |1≤ il≤ iσ1
≤···≤ iσl−1

≤N},

for instance Dl!. Then J
(l)
p has a general form of

J
(l)
il ,p

= ∑
il≤iσ1

≤···≤iσl−1
≤N

(

λαl,pil

l−1

∏
q=1

φσq,iσq
λασq ,p iσq

)

. (4.36)

We can obtain the similar conclusion with the first situation that J
(l)
il ,p

can be com-

puted with (l−1)N additions and (2l−2)N multiplications. Since the permutation
(σ1,σ2,··· ,σl−1) has (l−1)! arrangements, totally it requires (l−1)!(l−1)N additions

and (l−1)!(2l−2)N multiplications to calculate all J
(l)
p in this situation.

A similar conclusion can be also drawn for

Ĵ
(l)
il ,p

= ∑
il≤iσ1

≤···≤iσl−1
≤N

(

αl,pil+
l−1

∑
q=1

ασq,piσq

)(

λαl,pil

l−1

∏
q=1

φσq,iσq
λασq ,p iσq

)

. (4.37)
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Except for the calculation of J
(l)
p , it requires additional (l−1)!(3l−5)N additions

and (l−1)!(4l−5)N multiplications to calculate all J
(l)
p in this situation.

• Situation 3: Dp in which il is neither the minimum nor the maximum among
i1,··· ,il , given by a general form of

Dp={(i1,··· ,il) |1≤ iσ1
≤ iσ2≤···iσr≤ il≤ iσr+1

≤···≤ iσl−1
≤N}.

Then J
(l)
p has a general form of

J
(l)
il ,p

= ∑
(i1,···,il)∈Dp

(

λαl,pil

l−1

∏
q=1

φq,iq
λαq,piq

)

=

(

∑
1≤iσ1

≤···≤iσr≤il

λαl,pil

r

∏
q=1

φσq,iσq
λασq ,piσq

)(

∑
il≤iσr+1

≤···≤iσl−1
≤N

l−1

∏
q=r+1

φσq,iσq
λασq ,p iσq

)

=Pil ,pQil ,p.

Here Pil ,p and Qil ,p have the following forms:

Pil ,p= ∑
1≤iσ1

<···<iσr<il

λαl,pil

r

∏
q=1

φσq,iσq
λασq ,p iσq ,

Qil ,p= ∑
il≤iσr+1

≤···≤iσl−1
≤N

l−1

∏
q=r+1

φσq,iσq
λασq ,p iσq .

It is observed that Pil ,p has a similar form of J
(r)
il ,1

in the (r+1)-marginal case, thus can
be computed with rN additions and 2rN multiplications. A similar conclusion can
be drawn for Qil ,p in the (l−r)-marginal case, requiring (l−r−1)N additions and

2(l−r−1)N multiplications. J
(l)
il ,p

=Pil ,pQil ,p takes additional N multiplications. As

a result, J
(l)
il ,p

can be computed with (l−1)N additions and (2l−1)N multiplications.

Since there are l!−2(l−1)! cases in this situation, totally it requires (l!−2(l−1)!)

×(l−1)N additions and (l!−2(l−1)!)(2l−1)N multiplications to calculate all J
(l)
p

in this situation.

Additionally, Ĵ p has a general form of

Ĵ
(l)
il ,p

= ∑
(i1,···,il)∈Dp

(

αl,pil+
l−1

∑
q=1

αq,piq

)(

λαl,pil

l−1

∏
q=1

φq,iq
λαq,piq

)

= ∑
(i1,···,il)∈Dp

(

r

∑
q=1

ασq,piσq

)(

λαl,pil

l−1

∏
q=1

φσq,iσq
λασq ,1iσq

)



C. Chen et al. / CSIAM Trans. Appl. Math., x (2025), pp. 1-34 25

+ ∑
(i1,···,il)∈Dp

(

l−1

∑
q=r+1

ασq,piσq

)(

λαl,pil

l−1

∏
q=1

φσq,iσq
λασq ,piσq

)

+ ∑
(i1,···,il)∈Dp

(αl,pil)

(

λαl,pil

l−1

∏
q=1

φσq,iσq
λασq ,p iσq

)

=Ril ,pPil ,p+Sil ,pQil ,p+αl,pil Jil ,p,

in which

Ril ,p= ∑
1≤iσ1

≤···≤iσr≤il

(

r

∑
q=1

ασq,piσq

)(

r

∏
q=1

φσq,iσq
λασq ,p iσq

)

,

Sil ,p= ∑
il≤iσr+1

≤···≤iσl−1
≤N

(

l−1

∑
q=r+1

ασq,piσq

)(

λαl,pil

l−1

∏
q=r+1

φσq,iσq
λασq ,p iσq

)

.

Similarly, Ril ,p has a similar form of Ĵ
(r)
il ,1

in the (r+1)-marginal case, thus can be com-

puted with (3r−2)N additions and (4r−1)N multiplications. A similar conclusion can
be drawn for Sil ,p in the (l−r)-marginal case, requiring (3(l−r)−5)N additions and

4(l−r)−5N multiplications. Ĵ
(l)
il ,p

=Ril ,pPil ,p+Sil ,pQil ,p+αl,pil Jil ,p takes additional 2N ad-

ditions and 3N multiplications. As a result, except for the calculation of J
(l)
p , it requires

additional (l!−2(l−1)!)(3l−5)N additions and (l!−2(l−1)!)(4l−3)N multiplications to

compute all Ĵ
(l)
il ,p

in this situation.

By summing up the operation counts above, Tables 5 and 6 present the number of
additive and multiplicative operations required for the fast tensor-vector products in the
l-marginal optimal transport problem.

Table 5: The number of additive and multiplicative operations required for the fast tensor-vector product
K×i1

φ1×i2
φ2 ···×il−1

φl−1.

Margin l NA NM Total

l=3 17N 26N 43N

l=4 95N 156N 251N

l=5 599N 1032N 1631N

l (l(l!)−1)N (2l2−l−2)(l−1)!N ((3l2−l−2)(l−1)!−1)N

5 Numerical experiments

In this section, we conduct numerical experiments to demonstrate the accuracy and effi-
ciency of our algorithm in both 1D and 2D cases. The generalized Sinkhorn algorithm is
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Table 6: The number of additive and multiplicative operations required for the fast tensor-vector product
(C⊙K)×i1

φ1×i2
φ2 ···×il−1

φl−1.

Margin l NA NM Total

l=3 41N 72N 113N

l=4 263N 444N 707N

l=5 1799N 2976N 4775N

l ((4l−5)(l!)−1)N (6l2−4l−6)(l−1)!N ((10l2−9l−6)(l−1)!−1)N

regarded as the ground truth of the entropy regularized MMOT problem. In the follow-
ing experiments, we illustrate the computational costs of the two algorithms, as well as
the disparities in their results.

In the numerical experiments, the regularization parameter ε is set to 10−1 for both
our algorithm and the Sinkhorn algorithm unless otherwise specified. For the sake of
efficiency comparison, we conduct 100 Sinkhorn iterations uniformly across all experi-
ments. For each scenario, the computational time and relative error results are averaged
over 100 experiments. All the experiments are conducted in Matlab R2020a on a PC with
16G RAM, 11-th Gen Intel (R) Core (TM) i5-1135G7 CPU @2.40GHz.

5.1 1D random distribution

In the first experiment, we consider three discrete 1D random distributions on the inter-
val [0,1], sampled by N grid points uniformly distributed. Three discrete vectors u1,u2,u3

are randomly generated on the grid points, where each element follows a uniform distri-
bution over [0,1]. We compare the performances of the original Sinkhorn algorithm and
our algorithm in computing Wε(u1/‖u1‖1,u2/‖u2‖1,u3/‖u3‖1).

In Table 7, we output the computational time of the two algorithms and the differ-
ence between the transport plans computed by both algorithms. Notably, as the number
of grid points increases, we observe a significant speed-up ratio while the optimal trans-
port plans computed by both algorithms remain nearly identical. This shows the sub-

Table 7: The 1D random distribution problem. The comparison between the Sinkhorn algorithm and our
algorithm with different numbers of grid points N. PO and PS are the transport plans of our algorithm and the
Sinkhorn algorithm, respectively.

N
Computational time (s)

Speed-up ratio ‖PO−PS‖F
Ours Sinkhorn

10 4.99×10−1 6.48×100 1.30×101 1.13×10−16

20 1.01×100 5.26×101 5.18×101 5.53×10−17

40 2.05×100 4.20×102 2.05×102 5.68×10−17

80 4.12×100 3.47×103 8.43×102 4.12×10−17

160 8.27×100 2.74×104 3.32×103 3.58×10−17
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Figure 1: The 1D random distribution problem. (a): The computational time of our algorithm and the Sinkhorn
algorithm with different numbers of grid points N. (b): The computational time required to reach the corre-
sponding marginal error for N=80 under ε=0.1 (purple) and ε=0.05 (green).

stantial advantage of our algorithm in computation efficiency. In Fig. 1(a), we compare
the runtime of the Sinkhorn algorithm and our algorithm with different numbers of grid
points N. Employing linear regression, we obtain the empirical complexities of both algo-
rithms: Our algorithm exhibits O(N1.01) complexity, and the Sinkhorn algorithm shows
O(N3.01) complexity. Additionally, Fig. 1(b) illustrates the computational time required
to achieve corresponding marginal errors for N=80 under different ε, which emphasizes
the overwhelming superiority of our algorithm in speed under different regularization
parameters.

5.2 The Ricker wavelet

The Ricker wavelet is widely used in seismology for modeling the source time function,
which has a form of

R(t)=A
(

1−2π2F2
0 t2
)

e−π2F2
0 t2

.

Here A denotes the wave amplitude, and F0 is the dominant frequency.

We evaluate the performances of the original Sinkhorn algorithm and our algorithm
in measuring the discrepancy between three Ricker wavelets

f1(t)=R(t−τ1), f2(t)=R(t−τ2), f3(t)=R(t−τ3)

based on the Wasserstein-1 distance. Without loss of generality, we set A= 1, F0 = 1. To
transform the Ricker wavelet to probability distribution function, we apply the normal-
ization method introduced in [27] and consider the following distance:

D( f1, f2, f3)=Wε

(

f 2
1 /
∥

∥ f 2
1

∥

∥

1
+δ

1+Lδ
,

f 2
2 /
∥

∥ f 2
2

∥

∥

1
+δ

1+Lδ
,

f 2
3 /
∥

∥ f 2
3

∥

∥

1
+δ

1+Lδ

)

, (5.1)
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where L is used for normalization, and δ is a given parameter to improve numerical
stability.

In the experiment, we consider uniform grid points on the interval [−2,2], and set
parameters τ1 = 0, τ2 = 0.75, τ3 = 1.5, δ= 10−3. In Table 8, we output the computational
time of both algorithms and the difference between the transport plans computed by
both algorithms. The computational time required to achieve corresponding marginal
errors for N=80 under different ε is shown in Fig. 2(a). As discussed in Section 5.1, our
algorithm maintains significant efficiency while preserving high computational precision
compared to the Sinkhorn algorithm.

In Fig. 2(b), we show the importance of applying the log-domain stabilization tech-
nique when regularization parameters are relatively small, e.g. ε = 0.001. Without the
log-domain stabilization, our algorithm terminates at the 89-th iteration due to exceeding
the system threshold. However, with the log-domain stabilization applied, our algorithm
maintains its efficiency without termination.

Table 8: The Ricker wavelet problem. The comparison between the Sinkhorn algorithm and our algorithm
with different numbers of grid points N. PO and PS are the transport plans of our algorithm and the Sinkhorn
algorithm, respectively.

N
Computational time (s)

Speed-up ratio ‖PO−PS‖F
Ours Sinkhorn

10 5.07×10−1 6.78×100 1.34×101 9.39×10−17

20 1.06×100 5.27×101 4.97×101 1.03×10−16

40 2.12×100 4.20×102 2.68×102 1.93×10−16

80 4.20×100 3.40×103 8.10×102 7.36×10−17

160 8.52×100 2.71×104 3.18×103 1.16×10−16

Figure 2: The Ricker wavelet problem. (a): The computational time required to reach the corresponding
marginal error for N = 80 under ε = 0.1 (purple) and ε = 0.05 (green). (b): The comparison between our
algorithms with and without the log-domain stabilization for N=100, ε=0.001.
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5.3 2D random distribution

In this subsection, we evaluate the performance of the Sinkhorn algorithm and our algo-
rithm in computing the Wasserstein-1 metric between three discrete 2D random distribu-
tions on [0,1]×[0,1]. Those distributions are represented by N×M dimensional random
vectors, where each element follows a uniform distribution over [0,1]. We use the basic
settings mentioned in Section 4.1, and for simplicity, we set M=N.

Similar to Section 5.1, we output the computational time of two algorithms and the
difference between the transport plans computed by both algorithms in Table 9. Ad-
ditionally, Fig. 3(a) illustrates the comparison between the Sinkhorn algorithm and our
algorithm with different numbers of grid points N. It is notable that with increasing N,
the computation time of the Sinkhorn algorithm becomes unacceptable, which reaches
several weeks. In contrast, the computational cost of our algorithm remains affordable,
which draws the same conclusion as we discussed in the sections above. After con-

Table 9: The 2D random distribution problem. The comparison between the Sinkhorn algorithm and our
algorithm with different numbers of grid points N and ε = 0.1. PO and PS are the transport plans of our
algorithm and the Sinkhorn algorithm, respectively. We use ‘–’ to denote the computational time exceeding
2×106s.

N×M
Computational time (s)

Speed-up ratio ‖PO−PS‖F
Ours Sinkhorn

10×10 5.45×100 1.35×103 2.48×102 3.26×10−16

20×20 2.19×101 9.36×104 4.27×103 7.24×10−16

40×40 8.40×101 – – –

80×80 3.48×102 – – –

160×160 1.35×103 – – –

Figure 3: The 2D random distribution problem. (a): The comparison between the Sinkhorn algorithm and
our algorithm with different numbers of grid points N. (b): The computational time required to reach the
corresponding marginal error for N=10 under ε=0.1 (purple) and ε=0.01 (green).
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ducting linear regression, we obtain that the empirical complexity of our algorithm is
O(N1.99) while that of the Sinkhorn algorithm isO(N6.01). With the growth of dimension,
the advantage of our algorithm in efficiency becomes more prominent. Furthermore, the
computational time required to achieve corresponding marginal errors for N=10 under
different ε is shown in Fig. 3(b). Without doubt, our algorithm outperforms the Sinkhorn
algorithm by a wide margin in terms of speed under different regularization parameters.

5.4 Multiple image matching problem

Nowadays, image matching problem has emerged as a trending topic in optimal trans-
port [9, 17, 31]. Our above experiments have already demonstrated the significant effi-
ciency advantage of our algorithm over the traditional Sinkhorn algorithm, suggesting
its considerable potential also in the realm of computer vision. Despite the extensive re-
search on image matching, researchers are not satisfied with comparing two agents, but
turn to multiple marginal matching problem which aims at learning transport plans to
match a source domain to multiple target domains [11]. This multiple matching prob-
lem can be readily linked to the MMOT problem. Here we select three groups of images
with different sizes from the DOTmark dataset which is specifically designed for discrete
optimal transport [37] (see Fig. 4 for illustration).

We transform images into 2D distributions on [0,1]×[0,1], represented by M×N di-
mensional vectors. Without loss of generality, we set M= N. The Wasserstain-1 metric
between three images are computed by our algorithm and the original Sinkhron algo-
rithm. In Table 10, we present the computational time of the two algorithms and the
difference between the transport plans computed by both algorithms. As mentioned in
Section 5.3, the computational time of the Sinkhorn algorithm soon becomes unbearable
as N increases. In contrast, the computational cost of our algorithm still remains af-
fordable. The computational time required to achieve corresponding marginal errors for
N=16 under different ε is shown in Fig. 5(a).

Finally, we show that the log-domain stabilization technique still works for two-
dimensional problems with small regularization parameters. As shown in Fig. 5(b),

Figure 4: Illustration of images from DOTmark dataset.
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our algorithm terminates at the 242-nd iteration without this technique. In contrast, by
employing the log-domain stabilization technique, our algorithm maintains its efficacy,
proven to be an efficient method for computing the MMOT problem.

Table 10: Multiple image matching problem. The comparison between the Sinkhorn algorithm and our algorithm
with numbers of grid points N and ε=0.1. PO and PS are the transport plans of our algorithm and the Sinkhorn
algorithm, respectively. We use “–” to denote the computational time exceeding 2×106s.

N×M
Computational time (s)

Speed-up ratio ‖PO−PS‖F
Ours Sinkhorn

16×16 1.38×101 2.30×105 1.67×103 6.41×10−16

32×32 5.48×101 1.48×106 2.70×104 1.06×10−15

64×64 2.16×102 – – –

128×128 8.60×102 – – –

256×256 3.47×103 – – –

Figure 5: Multiple image matching problem. (a): The computational time required to reach the corresponding
marginal error for N=16 under ε=0.1 (purple) and ε=0.05 (green). (b): The comparison between our algorithms
with and without the log-domain stabilization for N=32,ε=0.0005.

6 Conclusion

In this paper, we propose an efficient numerical algorithm for solving the L1 norm based
multi-marginal optimal transport problem with linear complexity relative to support
size N. This method accelerates the repeated tensor-vector products in the Sinkhorn
algorithm by decomposing it into a summation of multiple components, each computed
recursively with O(N) additive and multiplicative operations. Furthermore, the log-
domain stabilization technique is incorporated into our algorithm to avoid over- and un-
derflow. In numerical experiments, we demonstrate that our algorithm achieves a signifi-
cant speed advantage over the traditional method while maintaining accuracy. It reduces
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the computation cost for l-marginal case from O(Nl) to O(N) for any l. We anticipate
that our algorithm will lead to a notable acceleration in various fields such as computer
vision, machine learning, and transportation operations.
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