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Abstract. The quadratic Wasserstein metric has shown its power in comparing prob-
ability densities. It is successfully applied in waveform inversion by generating ob-

jective functions robust to cycle skipping and insensitive to data noise. As an alter-

native approach that converts seismic signals to probability densities, the squaring
scaling method has good convexity and thus is worth exploring. In this work, we

apply the quadratic Wasserstein metric with squaring scaling to regional seismic to-
mography. However, there may be interference between different seismic phases in

a broad time window. The squaring scaling distorts the signal by magnifying the

unbalance of the mass of different seismic phases and also breaks the linear super-
position property. As a result, illegal mass transportation between different seismic

phases will occur when comparing signals using the quadratic Wasserstein metric.

Furthermore, it gives inaccurate Fréchet derivative, which in turn affects the inver-
sion results. By combining the prior seismic knowledge of clear seismic phase sep-

aration and carefully designing the normalization method, we overcome the above
problems. Therefore, we develop a robust and efficient inversion method based on

optimal transport theory to reveal subsurface velocity structures. Several numerical

experiments are conducted to verify our method.
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1. Introduction

Seismic waveform inversion has been receiving wide attention in past decades

[4, 14, 29, 32, 38, 42, 46, 47] due to its high-resolution imaging capability. The ma-

jor goal is to find optimal model parameters that minimize the discrepancy between

synthetic and observed seismic signals. In mathematics, it can be formulated as a par-

tial differential equation (PDE) constrained optimization problem, which consists of

two key ingredients [41]: the forward modeling of wave propagation and updating

model parameters. In previous decades, limited by computing power, most tomogra-

phy methods simulated wave propagation based on the ray theory. The high frequency

assumption ignores finite frequency phenomena such as wave-front healing and scat-

tering [17], and thus, leads to low-resolution inversion results [32]. With the rapid

development of computing power and the forward modeling method, more accurate

synthetic signals could be computed by numerically solving wave equations. It en-

ables us to obtain high-resolution subsurface velocity structures from the inversion of

waveform data, which could provide guidance information for seismic hazard assess-

ment [37] and exploration geophysics [41].

The discrepancy between synthetic and observed seismic waveforms is usually mea-

sured using the L2 metric [32, 37, 38, 41]. However, it suffers from the well-known

cycle skipping problem [41] so that the solution may be trapped in local minima dur-

ing the iteration, leading to incorrect inversion results. To overcome the problem,

many methods have been proposed to modify the objective function, e.g., the enve-

lope objective function [5], the cross-correlation-based objective function [23], and

the deconvolution-based objective function [22]. In addition, the quadratic Wasser-

stein (W2) metric from the Optimal Transport (OT) theory [36, 39, 40] has received

wide attention in recent years due to its nice properties and has been applied to

many seismic inverse problems such as earthquake location and seismic tomography

[7, 10–13, 46, 47, 49]. This metric measures the difference between two probability

distributions by minimizing the transport cost from one distribution to the other, which

is insensitive to data noise and preserves the convexity regarding data shift, dilation,

and partial amplitude change [10, 11, 14]. Thanks to these advantages, the recon-

struction of velocity models can succeed even if the initial model is far from the real

model [14,27,28].

However, it is not straightforward to apply the quadratic Wasserstein metric in the

seismic waveform inversion [13]. The main reason is that the seismic signals are

signed. Thus, a key ingredient in the application of the quadratic Wasserstein met-

ric to seismic waveform inversion is converting seismic waveforms to probability dis-

tributions. Various scaling techniques are developed to deal with this problem, e.g.,

linear scaling [47], squaring scaling [7], exponential scaling [33], and graph-space

transform [26]. Moreover, there are also some other metrics based on the OT theory

that have been applied to seismic inverse problems, e.g., the Wasserstein-Fisher-Rao

metric and the Kantorovich-Rubinstein norm, which relax the mass conservation con-

straint [27, 28, 49]. Though the quadratic Wasserstein metric has been applied widely
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in the exploration-scale inversion such as the Marmousi model [13, 28, 47] and the

BP 2004 model [27, 46, 47], its application in regional-scale or global-scale waveform

inversion is still under exploration [15].

In this work, we would like to provide a comprehensive study on the velocity inver-

sion in regional-scale models based on squaring scaling and the quadratic Wasserstein

metric. Theoretically, the quadratic Wasserstein metric with squaring scaling can gen-

erate an objective function with a smooth Fréchet derivative with respect to signal and

incorporate well with the adjoint state methods [13]. Compared with other scaling

methods, it has perfect convexity properties with respect to time shifts [46]. Due to

these benefits, the property and the application of the quadratic Wasserstein metric

with squaring scaling becomes a topic of great interest, which has been extensively

studied in recent years [12–14,46,47].

However, this approach has been less successful than expected in velocity inversion

at both exploration and regional scales. The signal in a broad time window usually

contains multiple seismic phases, between which may exist interference. The squaring

scaling magnifies the unbalance of the mass of different seismic phases and also breaks

the linear superposition property. As a result, the quadratic Wasserstein metric suffers

from interference between different seismic phases. The illegal mass transportation

between different seismic phases occurs, resulting in the contamination of the sensitiv-

ity kernel and further leading to inaccurate inversion results. In exploration scale, the

subsurface structure is usually complex [48], inducing multiple seismic phases that can

not be separated. It is difficult to avoid interference between different seismic phases,

which may be the reason why the quadratic Wasserstein metric with squaring scaling

has not been successful in the exploration field. Fortunately, in regional velocity in-

version, the main seismic phases may be separated [8, 16, 25] because the subsurface

structure in regional scale is not as complex as that in exploration scale. This gives us

the possibility to use the quadratic Wasserstein metric with squaring scaling to reveal

subsurface velocity structures in regional scale problems.

A consensus discussion [12] argues that the failure of the quadratic Wasserstein

metric with squaring scaling attributes to the squaring scaling that destroys the unique-

ness since f2 = g2 does not imply f = g . However, in our previous study of the earth-

quake location [7], this non-uniqueness issue is partially avoided using the quadratic

Wasserstein metric with squaring scaling, which is also recognized by Engquist and

Yang [13]. Starting with an appropriate initial model, the generated synthetic signal g
will be more similar to the real signal f than its opposite −f . By considering the prior

seismic phase information and the function continuity constraint, the synthetic signal

g tends to converge to the real signal f , ensuring the correct convergence. This success

may show that the non-uniqueness issue of squaring scaling is not the most domi-

nant reason for the unsuccessful inversion. In fact, the non-uniqueness issue widely

exists in the velocity inversion problems but does not lead to the failure of inversion,

e.g., [2, 23], in which the misfit equals 0 does not ensure the consistency of real and

synthetic signals. Despite the non-uniqueness issue, there are still more fundamental

issues that need to be investigated. According to our later observation in Section 3,
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squaring scaling magnifies the unbalance of the mass of different signal components.

This leads to illegal mass transportation between different seismic phases, which rarely

occurs even for the classical L2 metric [13]. As a result, the nice convexity property

of the objective function [11] cannot be maintained. Thus, the Fréchet derivative ob-

tained by the above process is also inaccurate or wrong. This also affects the inversion

process and results. Moreover, we find that the rough normalization technique can also

lead to illegal mass transportation. Worse yet, it can even create false seismic phases.

These are all problems we need to overcome.

Based on the above understandings, we exploit and develop techniques for the ve-

locity inversion problem using the quadratic Wasserstein metric with modified squaring

scaling. Our efforts revolve around avoiding illegal mass transportation. Specifically,

we combine the prior knowledge of seismology to match the same seismic phases. This

is a common technique in seismology. But it could work very well with the quadratic

Wasserstein metric rather than the classical L2 metric, especially for the well-known

cycle-skipping phenomenon. This improves the robustness of the inversion method.

Another study in this manuscript is that we carefully design the normalization method.

For the quadratic Wasserstein metric, the appropriate normalization method is very im-

portant. We not only need to avoid the singularity in the Fréchet derivative produced by

the inappropriate optimal transport map but also ensure that the false seismic phases

and illegal mass transportation do not appear. Based on the above strategies, we pro-

pose an effective velocity inversion method by using the quadratic Wasserstein metric

with modified squaring scaling, which is capable of revealing the velocity structure ac-

curately and efficiently in regional-scale tomography. We have to admit that there are

also other scaling methods that work well with the quadratic Wasserstein metric for

velocity inversion. However, the squaring scaling method is considered to have good

convexity. We would like to explore it in-depth and look forward to its advantages in

future research. This is the motivation for our work.

The rest of the paper is organized as follows. In Section 2, we briefly review the

mathematical formula of seismic velocity inversion and the basics of the quadratic

Wasserstein metric. We discuss important issues in the inversion and present detailed

implementations in Section 3. Meanwhile, we illustrate the necessity of our method by

some toy models. In Section 4, the numerical experiments are conducted to demon-

strate the effectiveness and efficiency of our method. Finally, we conclude the paper in

Section 5.

2. The quadratic Wasserstein metric and seismic velocity inversion

We review the seismic waveform tomography and the adjoint state method in this

section. The seismic velocity inversion can be written as the PDE constrained optimiza-

tion problem

cT (x) = argmin
c(x)

Ξ
(

c(x)
)

, Ξ
(

c(x)
)

=
N
∑

i=1

M
∑

j=1

χij

(

c(x)
)

, (2.1)
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where index (i, j) indicates the source-receiver pair. We consider N earthquakes recor-

ded by M seismic stations. Correspondingly, the misfit function χij is defined as

χij

(

c(x)
)

= D
(

sij
(

t; c(x)
)

, dij(t)
)

. (2.2)

Here, D is the distance function that measures the difference between the real seismic

signal dij(t) and the synthetic signal sij(t; c(x)). These two signals can be regarded as

the wavefields at the station

dij(t) = ui
(

ηj , t; cT (x)
)

, sij
(

t; c(x)
)

= ui
(

ηj , t; c(x)
)

(2.3)

satisfying the following acoustic wave equation with initial boundary conditions:

∂2ui
(

x, t; c(x)
)

∂t2
= ∇ ·

(

c2(x)∇ui
(

x, t; c(x)
))

+R(t− τi)δ(x− ξi), x ∈ Ω, t > 0, (2.4)

ui
(

x, 0; c(x)
)

=
∂ui

(

x, 0; c(x)
)

∂t
= 0, x ∈ Ω, (2.5)

n ·
(

c2(x)∇ui
(

x, t; c(x)
))

= 0, x ∈ ∂Ω, t > 0. (2.6)

Here, the locations of the earthquake and receiver station are ξi and ηj , the origin time

of the earthquake is τi. The seismic rupture is modeled as the point source δ(x− ξi) by

assuming its scale is much smaller compared to the scale of seismic wave propagation

[1,24]. And the source time function is simplified as the Ricker wavelet

R(t) = A
(

1− 2π2f2
0 t

2
)

e−π2f2

0
t2 , (2.7)

where f0 denotes the dominant frequency, and A is the normalization factor. The

outward unit normal vector to the simulation domain boundary ∂Ω is n. In practice,

the perfectly matched layer absorbing boundary condition [20] is used to deal with the

propagation of waves outside the area. In this section, we use the reflection boundary

condition to simplify the derivation.

Remark 2.1. Here, we consider the trace by trace strategy to apply the 1D quadratic

Wasserstein metric to the waveform inversion. This is an effective approach for geolog-

ical scale inversion [7,47], and also much easier in mathematics since the 1D quadratic

Wasserstein metric admits a closed form expression [36,39,40].

2.1. The adjoint method

Below, we briefly review the adjoint method [11, 31] for solving the optimization

problems (2.1)-(2.7). We assume that the small perturbation δc of seismic velocity

structure causes the perturbation of the wavefield

δui
(

x, t; c(x)
)

= ui
(

x, t; c(x) + δc(x)
)

− ui
(

x, t; c(x)
)

. (2.8)



282 Z.Y. Li et al.

For the sake of brevity, we will omit the parameter c(x) of the wavefield and the signals

in the following. The perturbation δui(x, t) satisfies the equations

∂2δui(x, t)

∂t2
= ∇ ·

(

c2(x)∇δui(x, t)
)

+∇ ·
((

2c(x) + δc(x)
)

δc(x)∇(ui + δui)(x, t)
)

, x ∈ Ω, (2.9)

δui(x, 0) =
∂δui(x, 0)

∂t
= 0, x ∈ Ω, (2.10)

n ·
(

c2(x)∇δui(x, t) +
(

2c(x) + δc(x)
)

δc(x)∇(ui + δui)(x, t)
)

= 0, x ∈ ∂Ω. (2.11)

Multiply the test function wi(x, t) on Eq. (2.9) and integrate it on Ω×[0, tf ] for sufficient

large time tf . Using integration by parts yields
∫ tf

0

∫

Ω

∂2wi

∂t2
δuidxdt−

∫

Ω

∂wi

∂t
δui

∣

∣

∣

∣

t=tf

dx+

∫

Ω
wi

∂δui
∂t

∣

∣

∣

∣

t=tf

dx

=

∫ tf

0

∫

Ω
∇ · (c2∇wi)δuidxdt−

∫ tf

0

∫

∂Ω
n · (c2∇wi)δuidζdt

−

∫ tf

0

∫

Ω
(2c+ δc) δc∇wi · ∇(ui + δui)dxdt

≈

∫ tf

0

∫

Ω
∇ · (c2∇wi)δuidxdt−

∫ tf

0

∫

∂Ω
n · (c2∇wi)δuidζdt

−

∫ tf

0

∫

Ω
2cδc∇wi · ∇uidxdt, (2.12)

where the higher-order terms are ignored in the last step since we can naturally assume

that ‖δui‖ ≪ ‖ui‖ and ‖δc(x)‖ ≪ ‖c(x)‖.

On the one hand, the perturbation of misfit δχij results from the wave speed per-

turbation δc(x), which writes

δχij(c) = D
(

sij(t) + δsij(t), dij(t)
)

−D
(

sij(t), dij(t)
)

≈
〈

Qij(t), δsij(t)
〉

=

∫ tf

0
Qij(t)δsij(t)dt.

Here, Qij(t) indicates the Fréchet derivative of the distance D with respect to the syn-

thetic data sij(t)
Qij(t) = ∇sD(s, d)

∣

∣

s=sij(t),d=dij (t)
, (2.13)

which will be specified later. Let wi(x, t) satisfy the adjoint equation

∂2wi(x, t)

∂t2
= ∇ ·

(

c2(x)∇wi(x, t)
)

+
M
∑

j=1

Qij(t)δ(x− ηj), x ∈ Ω, (2.14)

wi(x, tf ) =
∂wi(x, tf )

∂t
= 0, x ∈ Ω, (2.15)

n ·
(

c2(x)∇wi(x, t)
)

= 0, x ∈ ∂Ω. (2.16)
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Multiply δui(x, t) on Eq. (2.14), integrate it on Ω× [0, tf ] and subtract (2.12) to obtain

M
∑

j=1

∫ tf

0
Qij(t)δsij(t)dt =

M
∑

j=1

∫ tf

0

∫

Ω
Qij(t)δ(x − ηj)δui(x, t)dxdt

= −

∫ tf

0

∫

Ω
2c(x)δc(x)∇wi(x, t) · ∇ui(x, t)dxdt.

The linear relationship between δΞ and δc(x) is established as

δΞ(c) =

N
∑

i=1

M
∑

j=1

δχij(c) =

N
∑

i=1

∫

Ω
Ki(x)δc(x)dx, (2.17)

where the sensitivity kernel of the i-th source for c(x) is defined as

Ki(x) = −

∫ tf

0
2c(x)∇wi(x, t) · ∇ui(x, t)dt. (2.18)

2.2. The quadratic Wasserstein metric

As we discussed at the beginning of this section, the synthetic signal sij(t) and real

seismic signal dij(t) are time series. As we know, the quadratic Wasserstein metric

between the 1D probability density functions has an analytic form [7,39,40,47]

W 2
2 (f, g) =

∫ tf

0
|t− T (t)|2 f(t)dt, T (t) = G−1

(

F (t)
)

. (2.19)

Here f(t), g(t) are probability density functions defined on [0, tf ] and F (t), G(t) are

corresponding cumulative density functions

F (t) =

∫ t

0
f(τ)dτ, G(t) =

∫ t

0
g(τ)dτ.

Note that the seismic signals are not probability density functions. We need to trans-

form them into nonnegative and normalized functions for the quadratic Wasserstein

metric comparison. In other words, the misfit function defined in (2.2) can be written

as

χij = D
(

sij(t), dij(t)
)

= W 2
2

(

P
(

sij(t)
)

,P
(

dij(t)
))

. (2.20)

The operator P converts the seismic signals into probability density functions, which

will be discussed in Section 3. Thus, we can obtain the expression of the Fréchet

derivative [7,47] mentioned in (2.13)

∇sD(s, d) = ∇fW
2
2 (f, g)

∣

∣

f=P(s),g=P(d)
· ∇sP(s)

=

〈

2

∫ t

0
τ − T (τ)dτ,∇sP(s)

〉

. (2.21)
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3. Data preprocessing and new normalization

One key step in solving the optimization problem is to calculate accurate sensitivity

kernels for updating model parameters. As shown in Eq. (2.21), it highly depends on

the calculation of the optimal transport map T (τ). Thus, it is worth discussing how to

construct a reasonable and accurate optimal transport map.

Firstly, a seismic signal usually contains several seismic phases. When comparing

the whole signals using the quadratic Wasserstein metric with squaring scaling, the

unbalanced mass of different phases is magnified, which will lead to mass transporta-

tion between different seismic phases. This illegal mass transportation will generate

an unreasonable optimal transport map. Accordingly, we limit the mass transportation

within the same phase by applying time windows. This strategy focuses on the sig-

nal comparison between the same phase, which derives appropriate optimal transport

maps.

Secondly, to avoid the numerical singularities in the computation of the transport

map (2.19), it is required to assign a small constant to the squared signals to ensure

they are strictly positive and make the corresponding cumulative distribution functions

strictly monotone (see [36, Remark 2.6]). However, rough normalization techniques,

such as adding the same constant and then normalizing, would create false seismic

phases because different masses are introduced to the compared signals. As a result, the

illegal mass transportation will occur between the signal and the assigned mass, leading

to unreasonable optimal transport maps. To address this issue, we carefully design the

normalization method that not only avoids the singularity but also eliminates the false

seismic phases and illegal mass transportation.

To have a better understanding of the two issues, we illustrate the necessity of

our method by the classical two-layer model [14] modified from the global reference

models [18, 19]. The initial and real seismic velocity models are shown in Fig. 1. The

real model is bounded in Ω = [0, 80 km] × [0, 60 km], consisting of the crust and the

uppermost mantle that separated by the Moho discontinuity at 30 km depth. A cubic

+15% high velocity anomaly is set in the crust, given by

cT (x, z) =











6.67 km/s, (x, z) ∈ [35 km, 45 km]× [10 km, 20 km],

8.1 km/s, z > 30 km,

5.8 km/s, otherwise.

Correspondingly, the initial velocity model without high-velocity anomaly is as follows:

c0(x, z) =

{

5.8 km/s, z ≤ 30 km,

8.1 km/s, z > 30 km.

Our goal is to perform the seismic velocity inversion to reveal the high-velocity anomaly.

The computational time interval is [0 s, 21 s]. The inversion grid spacing is 2 km
and the number of degrees of freedom amounts to 1200. The space and time steps in
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Figure 1: Illustration of the two-layer models. (a) The real seismic velocity model with a high-velocity
anomaly. (b) The initial velocity model. The green inverted triangles indicate the receiver stations and the
white stars indicate the earthquakes. The specific source-receiver pair is highlighted by the black star and
inverted triangle. The cyan and tan dashed lines are the direct wave path and the reflected wave path,
respectively.

the forward simulation are 0.2 km and 0.01 s, respectively. The dominant frequency of

the source time function in (2.7) is f0 = 2 Hz. We randomly choose 25 receiver stations

deployed on the surface (z = 0 km) and 80 earthquakes distributed in the study region.

3.1. Selecting source-receiver pairs and picking seismic phases

Due to subsurface velocity discontinuities such as the Moho interface, a seismic sig-

nal may contain different seismic phases, including the direct wave and the reflected

wave. These seismic waves propagate along different wave paths and carry distinct un-

derground structure information. Sometimes, the direct wave and the reflected wave

arrive simultaneously and can not be discriminated, which is known as the multipath

phenomenon [34]. It is not trivial to extract robust information from this kind of

constraint. One common technique in seismology is to manually exclude these source-

receiver pairs to avoid interference caused by unreliable constraints [8, 16]. Here we

also follow this strategy. When different seismic phases can be identified, the same

phases of the real seismic signal and the synthetic signal should be matched when

comparing these signals. However, the unreasonable match between different phases

usually happens in the quadratic Wasserstein metric comparison due to the mass con-

servation and global matching property [13, 46]. When the masses of the real seis-

mic signal and the synthetic signal are unbalanced for the same phase, illegal mass

transportation between different seismic phases occurs. In this case, the quadratic

Wasserstein metric will break the convexity of the objective function and produce an

unreasonable optimal transport map, which will further result in artifacts in the sen-

sitivity kernels. Particularly, the squaring scaling enhances the unbalance of the mass

of different seismic phases, magnifying this problem [13]. Therefore, we need to deal

with this issue seriously.
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Many techniques in seismology have been proposed to ensure the match between

the same phase, e.g., manually picking the signals and phases [8,16], automated pick-

ing with the waveform simulations [25, 37], and deep-learning-based picking method

[30, 35]. These methods pick the same seismic phases for comparison and exclude

multi-path signals to avoid interference. In our study, we follow the same idea and

use a simple approach to process the signals. We manually retain the signals whose

seismic phases can be identified and select appropriate time windows that contain the

same seismic phases according to theoretical arrival times [8, 43]. As a result, the

same seismic phases of the real and synthetic signals are compared using the quadratic

Wasserstein metric, which overcomes the cycle-skipping problem and generates reliable

and reasonable optimal transport maps.

Next, we explain the necessity of the above-mentioned data preprocessing method.

The squaring scaling operation P2 in Eq. (3.2) is applied for the computation of adjoint

source and sensitivity kernel. For the earthquakes above the Moho discontinuity, at

least two waves, the direct wave and the reflected wave can be recorded. Their wave

paths are denoted by cyan dashed lines and tan dashed lines in Fig. 1, respectively.

In the real seismic velocity model, the amplitude of the direct wave signal is slightly

smaller since its energy dissipates when passing through the high-velocity anomaly.

On the other hand, the reflected wave signal should be the same since the velocity

structures around the reflected wave path are the same in the initial and real seismic

velocity models (Fig. 1).

The difference between the real seismic signal and the synthetic signal is further

magnified by the squaring scaling. It leads to illegal mass transportation from the direct

wave of the synthetic signal to the reflected wave of the real seismic signal (Fig. 2(a)),

causing the additional energy in the adjoint source in the interval of 11.5 − 13.0 s in

Fig. 2(e) and the artifacts in the sensitivity kernel shown in Fig. 2(b). If we only con-

sider direct waves for inversion, the above-mentioned difficulties will be easily solved,

as we illustrate in Figs. 2(c) and 2(d).

Remark 3.1. In practical application, the reflected wave signals are also important

to constrain the underground velocity structures [16]. When the reflected waves are

picked, our method can also be implemented using the reflected waves. However, the

utilization of the reflected wave is not trivial, and more technical details are required

in practice [3, 45, 50]. Thus, we will not discuss the usage of reflected waves in this

work.

3.2. New normalization method

As it is well known, the quadratic Wasserstein metric measures the difference be-

tween two probability density functions, which is not directly suitable for seismic sig-

nals. Thus, some processing procedures, i.e., choosing an appropriate operator P in

(2.20), are required to convert seismic signals into probability density functions. Sev-

eral different approaches, e.g., linear scaling [47], squaring scaling [7], exponential
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Figure 2: Illustration of the optimal transport maps between the real seismic signal and synthetic signal (a),
(c), the sensitivity kernels (b), (d), and the comparison of adjoint sources (e). In (a) and (b), direct and
reflected waves are compared simultaneously. In (c) and (d), only direct waves are compared. In (a) and
(c), the blue and brown shaded areas denote the time window of the direct and reflected waves, respectively.
The purple, yellow, and cyan lines represent the mass transportation from the synthetic signal at time t to
the real seismic signal at time T (t) according to the optimal transport plan in Eq. (2.19). The different
colors correspond to the different time ranges. The illegal mass transportation from the direct wave of the
synthetic signal to the reflected wave of the real seismic signal is within the green box in (a). In (b) and (d),
the earthquake and the station receiver are represented by the black star and inverted triangle, respectively.
The velocity anomaly is within the black dashed box. In (e), the adjoint sources of cases (a) and (c) based
on the operator P2 in Eq. (3.2) are plotted for comparison.

scaling [33], and graph-space transform [26] have been proposed to address this is-

sue. Among these methods, the squaring scaling is considered to have good convexity,

which is worthy of in-depth discussions.
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The normalization operator with squaring scaling consists of two ingredients: squar-

ing seismic signal to ensure non-negativity and normalization to guarantee the same

mass. A natural approach is

P1

(

s(t)
)

=
s2(t)

〈s2(t)〉
, (3.1)

in which

〈s2(t)〉 =

∫ tf

0
s2(τ)dτ.

Substitute the above formula into Eq. (2.20), the form of the misfit function is given by

χ = D
(

s(t), d(t)
)

= W 2
2

(

s2(t)

〈s2(t)〉
,
d2(t)

〈d2(t)〉

)

.

Here the subscript indices i and j are dropped for simplicity. According to the dis-

cussions in Section 2.2, we need to compute the inverse of the following cumulative

distribution function:

G(t) =

∫ t

0

d2(τ)

〈d2(t)〉
dτ.

However, G−1(t) is not well defined when the real seismic signal d(t) = 0 in a cer-

tain interval. Accordingly, there will be difficulties in the computation of the optimal

transport map and the misfit function.

In order to avoid the above-mentioned problem, we can make a slight upward shift

on the squared signal before the normalization, i.e.,

P2

(

s(t)
)

=
s2(t) + ε

〈s2(t) + ε〉
. (3.2)

Here ε > 0 is a small parameter. However, the misfit function in (2.20) with this

operator

χ = D
(

s(t), d(t)
)

= W 2
2

(

s2(t) + ε

〈s2(t) + ε〉
,
d2(t) + ε

〈d2(t) + ε〉

)

still leads to illegal mass transportation (green boxes in Fig. 3(a)) since the additional

masses are not equal
ε

〈s2(t) + ε〉
6=

ε

〈d2(t) + ε〉
.

Obviously, the newly created masses in the real and synthetic signals do not match

correctly, which could result in an unreasonable optimal transport map and further lead

to artifacts in the sensitivity kernel Ki(x) (Fig. 3(b)). However, with a simple trick, we

can solve the problem of unequal additional masses by modifying the operator as

P3

(

s(t)
)

=
s2(t)/〈s2(t)〉 + ε

1 + tfε
. (3.3)
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Figure 3: Illustration of the optimal transport maps between the real seismic signal and synthetic signal (a),
(c) and the sensitivity kernels (b), (d). The inappropriate operator P2 in Eq. (3.2) is used for (a) and (b).
The newly proposed operator P3 in Eq. (3.3) is used for (c) and (d). In (a) and (c), the purple and cyan
lines represent the mass transportation from the synthetic signal at time t to the real seismic signal at time
T (t) according to the optimal transport plan in Eq. (2.19). The different colors correspond to the different
time ranges. The illegal mass transportation from the seismic wave to the additional mass caused by the
inappropriate operator P2 is within the green boxes in (a). In (b) and (d), the earthquake and the station
receiver are represented by the black star and inverted triangle, respectively. The velocity anomaly is within
the black dashed box.

Here, tf denotes the length of the computational time interval. We can clearly see

that regardless of the values of s(t) and d(t), the additional mass is ε/(1 + tfε). As

a result, we can avoid all the mentioned troubles. Both the optimal transport map and

the sensitivity kernel are satisfactory, as we illustrate in Figs. 3(c) and 3(d).

Remark 3.2. In the squaring scaling, a parameter ε is added to avoid the singularity. It

is noted that large ε could destroy the convexity property. On the other hand, numerical

singularities occur when ε is too small. In practice, ε is feasible in a relatively large

range, e.g., 10−4 ∼ 10−2. In the following numerical experiments, we select ε = 10−3.



290 Z.Y. Li et al.

4. Numerical experiments

In this section, we verify our inversion method based on the quadratic Wasserstein

metric with modified squaring scaling by conducting two numerical experiments: (1)

the two-layer model [14]; (2) the crustal root model [42]. We use the finite difference

method to solve the acoustic wave equation [9, 21, 47]. The perfectly matched layer

boundary condition [20] is applied to absorb the outgoing wave. The delta function

δ(x) in the source term should be discretized for numerical simulation. Here we choose

a simple and effective implementation from [44]

δh(x) =






















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, 2h < |x| ≤ 3h,

0, |x| > 3h.

Here h is related to the mesh size.

4.1. The two-layer model

The parameter settings can be found in Section 3. We perform the seismic velocity

inversion by using the quadratic Wasserstein metric with squaring scaling. The inver-

sion is also performed with the traditional L2 metric for comparison. To quantitatively

compare the results of different methods, we also compute the relative model error

RME =

∫

Ω
|ck(x)− cT (x)|

2dx
∫

Ω
|c0(x)− cT (x)|

2dx

,

and the relative misfit function

RMF =
Ξ
(

ck(x)
)

Ξ
(

c0(x)
) ,

where ck(x) indicates the velocity model in the k-th iteration.

In Fig. 4, we present the inversion results of L2 metric and the quadratic Wasserstein

metric. Obviously, the L2-based inversion could not capture the +15% high-velocity

anomaly (Fig. 4(a)). Although the misfit function decreases in the iteration (Fig. 4(c)),

the model error increases (Fig. 4(b)).

In Fig. 4 and Table 1, we also compare the inversion results of the quadratic Wasser-

stein metric with different operators P2 and P3. From the convergent trajectories

(Figs. 4(b), 4(c)), we can see the relative model error and the relative misfit function of
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Table 1: The two-layer model. Relative model error and relative misfit function of the quadratic Wasserstein
with the operators P2 and P3 in 20, 40 and 80 iteration steps, respectively.

Iteration Steps
Relative Model Error Relative Misfit Function

W2 with P2 W2 with P3 W2 with P2 W2 with P3

20 3.69× 10−1 2.15× 10−1 4.99× 10−3 6.90× 10−4

40 2.23× 10−1 1.04× 10−1 3.61× 10−4 9.41× 10−5

80 8.35× 10−2 3.04× 10−2 1.25× 10−5 2.75× 10−6

Figure 4: The inversion results of the two-layer model. (a) The result for L
2 metric after 20 steps. (b)

The convergent trajectories of the relative model error. (c) The convergent trajectories of the relative
misfit function. In (d)-(f) and (g)-(i), we present the results for the quadratic Wasserstein metric with the
operators P2 and P3, respectively. From left to right, the inversion iteration steps are 20, 40, and 80. All
the results are shown in the same color bar.

the operator P3 are significantly smaller than those of the operator P2. Quantitatively,

we can see from Table 1 that the operator P3 only needs half of the iteration steps

of the operator P2 to achieve almost the same relative model error and relative misfit

function. This significantly reduces the expensive computational cost of the seismic

velocity inversion problem. It can be also seen from Figs. 4(d)-4(i) that the velocity in-

version results of the operator P3 are better than those of the operator P2 at the same

iteration steps. The above discussions show that our approach has higher efficiency

and generates better inversion results.
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4.2. The crustal root model

Let us consider the crustal root model, a kind of subsurface structure usually found

along the orogen. This model consists of the two-layered crust divided by the Conrad

discontinuity. A dipping and discontinuous Moho interface separates the crust and

the mantle. The depiction of these tectonic features helps us better understand the

forming of old mountains. In mathematics, we consider this three-layer model in the

bounded domain Ω = [0, 80 km] × [0, 80 km]. Three layers are divided by the Conrad

discontinuity at 20 km depth and the Moho discontinuity whose location (x,L(x)) is

formulated with a piecewise function, given by

L(x) =







36 +
25

1600
x2 km, 0 km ≤ x ≤ 40 km,

36 km, 40 km < x ≤ 80 km.

The seismic wave speed at each layer refers to the AK135 model [19], generating the

real seismic velocity model (Fig. 5(a))

cT (x, z) =











5.8 km/s, z ≤ 20 km,

6.5 km/s, 20 km < z ≤ L(x),

8.04 km/s, otherwise.

Correspondingly, the initial velocity model (Fig. 5(b)) without crustal root anomaly is

c0(x, z) =











5.8 km/s, z ≤ 20 km,

6.5 km/s, 20 km < z ≤ 36 km,

8.04 km/s, otherwise.

Our goal is to perform the seismic velocity inversion to image this crustal root.

The computational time interval is [0 s, 21 s]. The inversion grid spacing is 2 km
and the number of degrees of freedom amounts to 1600. The space and time steps in

the forward simulation are 0.2 km and 0.01 s, respectively. The dominant frequency of

the source time function in (2.7) is f0 = 2 Hz. We randomly choose 40 receiver stations

deployed on the surface and 80 earthquakes distributed in the study region.

Similar to Section 4.1, we present the inversion results of the L2 metric and the

quadratic Wasserstein metric with the operators P2 and P3 in Fig. 6. Obviously, the

L2-based inversion could not capture the crustal root structure as shown in Fig. 6(a).

The relative model error and the relative misfit function with respect to different nor-

malization operators are given in Table 2. Correspondingly, the convergent trajectories

are output in Figs. 6(b) and 6(c). In Figs. 6(d)-6(i), the inversion results are also pre-

sented. According to the above results, we can draw the same conclusions as those in

Section 4.1.
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Table 2: The crustal root model. Relative model error and relative misfit function of the quadratic Wasser-
stein with the operators P2 and P3 in 40, 80 and 160 iteration steps, respectively.

Iteration Steps
Relative Model Error Relative Misfit Function

W2 with P2 W2 with P3 W2 with P2 W2 with P3

40 6.43× 10−1 5.59× 10−1 5.47× 10−3 6.35× 10−4

80 5.37× 10−1 4.68× 10−1 7.83× 10−4 1.74× 10−4

160 4.32× 10−1 3.99× 10−1 1.33× 10−4 6.11× 10−5

Figure 5: Illustration of the crustal root models. (a) The real seismic velocity model. (b) The initial velocity
model. The green inverted triangles and the white stars indicate the receiver stations and the earthquakes,
respectively.

5. Conclusion

What we have seen from the above is the solution to the difficult problem of seis-

mic velocity inversion based on the quadratic Wasserstein metric with squaring scaling.

The key step is to obtain a reasonable and accurate optimal transport map, which plays

a dominant role in constructing the Fréchet derivative. By focusing on the comparison

between the same seismic phases and carefully designing the normalization method,

we obtain reasonable and accurate optimal transport maps and succeed in inverting

for the regional-scale seismic velocity structures using the quadratic Wasserstein met-

ric with modified squaring scaling. The experiment results show that the convergence

efficiency and result accuracy are significantly improved. In later works, we would like

to combine the above techniques with the double-difference travel-time adjoint tomog-

raphy [6], which has significant advantages in real seismic data. This may result in

a more robust and reliable seismic velocity inversion method. We are currently investi-

gating this interesting topic and hope to report this in an independent publication.
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Figure 6: The inversion results of the crustal root model. (a) The result for L
2 metric after 40 steps.

(b) The convergent trajectories of the relative model error. (c) The convergent trajectories of the relative
misfit function. In (d)-(f) and (g)-(i), we present the results for the quadratic Wasserstein metric with the
operators P2 and P3, respectively. From left to right, the inversion iteration steps are 40, 80, and 160. All
the results are shown in the same color bar.
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[37] C. TAPE, Q. Y. LIU, A. MAGGI, AND J. TROMP, Seismic tomography of the southern Califor-

nia crust based on spectral-element and adjoint methods, Geophys. J. Int. 180(1) (2010),

433–462.
[38] J. TROMP, C. TAPE, AND Q. Y. LIU, Seismic tomography, adjoint methods, time reversal and

banana-doughnut kernels, Geophys. J. Int. 160(1) (2005), 195–216.
[39] C. VILLANI, Topics in Optimal Transportation, Graduate Studies in Mathematics, AMS,

2003.

[40] C. VILLANI, Optimal Transport: Old and New, Springer, 2008.
[41] J. VIRIEUX AND S. OPERTO, An overview of full-waveform inversion in exploration geo-

physics, Geophysics 74(6) (2009), WCC1–WCC26.

[42] J. WANG, D. H. YANG, H. JING, AND H. WU, Full waveform inversion based on the ensemble

Kalman filter method using uniform sampling without replacement, Sci. Bull. 64(5) (2019),

321–330.
[43] S. WANG AND H. TKALČIĆ, Seismic event coda-correlation: Toward global coda-correlation

tomography, J. Geophys. Res. Solid Earth 125 (2020), e2019JB018848.



On Quadratic Wasserstein Metric for Seismic Velocity Inversion 297

[44] X. WEN, High order numerical quadratures to one dimensional delta function integrals,
SIAM J. Sci. Comput. 30(4) (2008), 1825–1846.
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