
Journal of Scientific Computing            (2024) 98:1 
https://doi.org/10.1007/s10915-023-02403-2

Fast Sinkhorn II: Collinear Triangular Matrix and Linear Time
Accurate Computation of Optimal Transport

Qichen Liao1,2 · Zihao Wang3 · Jing Chen4 · Bo Bai2 · Shi Jin5,6 · Hao Wu1

Received: 23 June 2022 / Revised: 31 January 2023 / Accepted: 29 October 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
In our previous work (Liao et al. in Commun Math Sci, 2022), the complexity of Sinkhorn
iteration is reduced from O(N 2) to the optimal O(N ) by leveraging the special structure
of the kernel matrix. In this paper, we explore the special structure of kernel matrices by
defining and utilizing the properties of the Lower-ColLinear Triangular Matrix (L-CoLT
matrix) and Upper-ColLinear Triangular Matrix (U-CoLT matrix). We prove that (1) L/U-
CoLTmatrix–vector multiplications can be carried out in O(N ) operations; (2) both families
of matrices are closed under the Hadamard product and matrix scaling. These properties help
to alleviate two key difficulties for reducing the complexity of the Inexact Proximal point
method (IPOT), and allow us to significantly reduce the number of iterations to O(N ). This
yields the Fast Sinkhorn II (FS-2) algorithm for accurate computation of optimal transport
with low algorithm complexity and fast convergence. Numerical experiments are presented
to show the effectiveness and efficiency of our approach.

Keywords Optimal Transport · Wasserstein-1 metric · Sinkhorn algorithm · IPOT method ·
FS-2 algorithm

Mathematics Subject Classification 49M25 · 65K10

1 Introduction

The Wasserstein metric, broadly used in optimal transport theory with applications in many
fields including machine learning, quantifies the dissimilarity between two probabilistic dis-
tributions. Many methods have been proposed to compute the Wasserstein metrics directly,
such as the linear programming methods [22, 30, 36], combinatorial methods [33], solv-
ing the Monge-Ampère equations [3, 14, 15], via Benamou-Brenier formulation [2, 21] and
the proximal splitting methods [8, 28]. In recent years, several approximation techniques in
optimal transport for high-dimensional distributions have also been proposed [26, 27].
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The Sinkhorn algorithm [10, 34] is a popular O(N 2) algorithm to approximate theWasser-
stein metric [31] by minimizing the entropy regularized optimal transport (OT) problem. In
[24], the FS-1 algorithm is proposed to solve entropy regularized OT in O(N ) time by lever-
aging the special structure of the Sinkhorn kernel matrix of the Wasserstein-1 metric. The
solution of entropy regularized OT approximates the accurate OT solution only if the regu-
larization parameter is sufficiently small. However, small regularization parameters lead to
numerical instability and excessive iterations [13]. This causes the slow convergence of the
Sinkhorn algorithm.

The Inexact Proximal point method [35] for the Optimal Transport problem (IPOT) has
been proposed to address this challenge. It regularizes the original OT by introducing the
proximal point term and solves a series of successive subproblems. Only fairly mild regu-
larization parameters are required to ensure the method’s fast convergence to the accurate
OT solution in an O(N 2) algorithm. The goal of this paper is to construct a new method to
accurately compute OT solutions with good convergence behavior and O(N ) algorithm com-
plexity by combing the IPOT method and the FS-1 algorithm. Note the two key steps in the
IPOT method make it hard to reduce the complexity to O(N ): the matrix Hadamard product
(Algorithm 1, line 4) and the matrix scaling (Algorithm 1, line 8). For general matrices, the
complexity of the above operations is both O(N 2). Moreover, these operations may destroy
the special structure of the kernel matrix [24], making it impossible for us to implement
matrix–vector multiplication with O(N ) cost.

We will explore the special structure of kernel matrices by defining and exploiting the
properties of the Lower-ColLinear Triangular Matrix (L-CoLTmatrix) and Upper-ColLinear
Triangular Matrix (U-CoLT matrix). For these matrices, we can realize the matrix–vector
multiplication with O(N ) cost by using the idea of dynamic programming similar to [24].
Next, we show that each L/U-CoLT matrix can be represented by two vectors of dimen-
sion N . Furthermore, we prove the closure of families of L/U-CoLT matrices to matrix
Hadamard product and matrix scaling. This means that the special structure of the kernel
matrix is preserved by matrix Hadamard product and matrix scaling, so we can still imple-
ment matrix–vector multiplication (Algorithm 1, lines 6–7) with O(N ) cost. On the other
hand, by updating two representation vectors of the L/U-CoLTmatrix, we can also implement
matrix Hadamard product (Algorithm 1, line 4) and matrix scaling (Algorithm 1, line 8) with
O(N ) cost. Consequently, the Fast Sinkhorn II (FS-2) algorithm is developed, which inte-
grates the advantages of both IPOT and FS-1. Moreover, we also find that the FS-2 algorithm
has the advantage in reducing the space complexity since all the matrices can be represented
by vectors. Due to these benefits, one can expect that our FS-2 could be applied in various
fields, e.g., machine learning [16, 25–27], image processing [29, 32], inverse problems [6,
12, 18, 37], density function theory [5, 9, 19].

The rest of the paper is organized as follows. In Sect. 2, the basics of the Wasserstein-1
metric and the IPOT method are briefly reviewed. After presenting the definition, properties,
and fast matrix–vector multiplications of the L/U-CoLT matrix in Sect. 3, we apply them to
accelerate the IPOT method, thus developing the FS-2 algorithm in Sect. 4. In Sect. 5, the
FS-2 algorithm is extended to high dimensions. The numerical experiments are performed
to verify our conclusions in Sect. 6. We conclude the paper in Sect. 7.
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2 TheWasserstein-1 Metric and the IPOTMethod

Given two unit discrete distributions μ = ∑N
i=1 uiδxi and ν = ∑N

j=1 v jδ y j ,

u = (u1, u2, · · · uN )� ∈ R
N , v = (v1, v2, · · · , vN )� ∈ R

N ,

where ui ≥ 0, v j ≥ 0, and
∑

i ui = ∑
j v j = 1. The Wasserstein-1 distance between them

is defined as [31]

W1 (μ, ν) = min
�1=u,�T 1=v γi j≥0

〈C, �〉 , (1)

where C = [ci j ] ∈ R
N×N is the cost matrix. The element ci j = ‖xi − y j‖1 represents

the cost of transporting the unit mass from position xi to position y j and the variable � =
[γi j ] ∈ R

N×N to be optimized is the transport plan. Here, the Frobenius inner product
〈A, B〉 = ∑

i, j ai j bi j , where A = [ai j ], B = [bi j ] are real-valued matrices.
The Sinkhorn algorithm [10, 34] solves an entropy regularized OT problem to obtain an

approximate result of (1). However, the small regular parameter required by good approx-
imation leads to a slow convergence rate and numerical instability. To avoid this problem,
the proximal point iteration (2) is developed to solve (1) accurately [35]. It begins with a
transport map �(0) and iteratively solves the following minimization problem

�(t+1) = argmin
�1=u,�T 1=vγi j≥0

〈C, �〉 + δ(t)Dh

(
�, �(t)

)
, (2)

where Dh is Bregman divergence, taken in the form of the KL divergence in [35],

Dh (A, B) =
∑

i, j

(

ai j ln
ai j
bi j

− ai j + bi j

)

and δ(t) is the regular parameter. The Lagrangian of the above equation writes

L(�,α,β) = 〈C, �〉 + δ(t)Dh

(
�, �(t)

)
+ αT (�1 − u) + βT

(
�T 1 − v

)
.

Taking derivative of the Lagrangian with respect to γi j directly leads to

γi j = e−αi /δ
(t)
Q(t)

i j e
−β j /δ

(t)
, where Q(t)

i j = γ
(t)
i j e−ci j /δ(t)

> 0.

Denoting � as the Hadamard product, Q(t) = K � �(t) and K = [e−ci j /δ(t) ] ∈ R
N×N is the

kernel matrix. Letting φi = e−αi /δ
(t)
, ψ j = e−β j /δ

(t)
, and vectors φ = (φi ) and ψ = (ψ j ),

one obtains

diag(φ)Q(t)diag(ψ)1 = u, diag(ψ)Q(t)�diag(φ)1 = v. (3)

By iteratively updating vectors φ and ψ

ψ (t,
+1) = v 	 (Q(t)�φ(t,
)), φ(t,
+1) = u 	 (Q(t)ψ (t,
+1)), (4)

one can obtain an accurate solution for the original OT problem (1). Here 	 represents
pointwise division, t is the proximal iteration step (outer iteration) and 
 it the Sinkhorn-type
iteration step (inner iteration). The pseudo-code of IPOT is shown in Algorithm 1.
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Algorithm 1 IPOT

Input: u, v ∈ R
N ; K = e−C/δ ∈ R

N×N ; L, itr_max ∈ N
+

Output: W1(u, v)

1: φ, ψ ← 1
N 1N

2: � = 1N1TN
3: for t = 1 : itr_max do

4: Q ← K � �

5: for 
 = 1 : L do

6: ψ ← v 	 (
QTφ

)

7: φ ← u 	 (Qψ)

8: � ← diag (φ) Qdiag (ψ)
return W1(u, v)

3 The Collinear Triangular Matrix

3.1 Definition and Fast Matrix–Vector Multiplication

Definition 1 [Lower/Upper-Collinear Triangular Matrix] A lower triangular matrix is called
a Lower-Collinear Triangular Matrix(L-CoLT matrix) if its corresponding entries on any
two rows (columns) have the same–column (row) independent– ratio except those dividing
by 0. Specifically, the N-dimensional L-CoLT matrix set is defined as follows:

CN
L =

{
M ∈ R

N×N | mi+1, j/mi, j = ri , j ≤ i; mi, j = 0, i < j, r ∈ (R\{0})N−1
}

. (5)

Similarly, we define Upper-Collinear Triangular Matrix(U-CoLT matrix), which is a
strictly upper triangular matrix:

CN
U =

{
M ∈ R

N×N | mi−1, j/mi, j = r ′
i−1, i < j; mi, j = 0, i ≥ j, r ′ ∈ (R\{0})N−2

}
.

(6)

We call the vectors r and r ′ in (5)-(6) the ratio vectors of the collinear triangular matrix.

Thematrices introduced inDefinition 1 are termed as collinear triangularmatrices (CoLT),
due to the following collinearity between columns:

mi, j/mi, j+1 = mk, j/mk, j+1 ⇐⇒ mi, j/mk, j = mi, j+1/mk, j+1.

Theorem 1 [Vector Representation of Collinear Triangular Matrix] Any L-CoLT matrix ML

can be represented by its diagonal elements γ and the ratio vector r in Equation (5). Any
U-CoLT matrix MU can be represented by its superdiagonal elements γ ′ and the ratio vector
r ′ in (6).

Proof For any L-CoLT matrix ML ∈ CN
L , if its corresponding γ and r are given, then

mi, j = γ j

i−1∏

k= j
rk . The proof of U-CoLT is similar. ��

In the following, we use L- CoLT(γ , r), γ ∈ R
N , r ∈ R

N−1 and U- CoLT(γ ′, r ′),
γ ′ ∈ R

N−1, r ′ ∈ R
N−2 to represent a L-CoLT matrix and a U-CoLT matrix, respectively.

A specific correspondence of L-CoLT and U-CoLT is shown as follow:
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For the L-CoLT matrix ML

ML = L- CoLT(γ , r) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

γ1
γ1r1 γ2

γ1r1r2 γ2r2 γ3
...

...
...

. . .

γ1
N−1∏

i=1
ri γ2

N−1∏

i=2
ri γ3

N−1∏

i=3
ri · · · γN

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Similarly, for the U-CoLT matrix MU

MU = U- CoLT(γ ′, r ′) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 γ ′
1 γ ′

2r
′
1 · · · γ ′

N−1
N−2∏

i=1
r ′
i

0 γ ′
2 · · · γ ′

N−1
N−2∏

i=2
r ′
i

. . .
. . .

...

0 γ ′
N−1
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

The special nature of the L-CoLT and U-CoLT matrices allows us to compute matrix–
vector multiplications in O(N ) operations.

For any ML = L- CoLT(γ , r) and vector y ∈ R
N , the matrix–vector multiplication

ML y is written as

ML y =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

γ1y1 + 0 + 0 · · · + 0
γ1r1y1 + γ2y2 + 0 · · · + 0

γ1r1r2y1 + γ2r2y2 + γ3y3 · · · + 0
...

...
...

...
...

. . .
...

...

γ1
N−1∏

i=1
ri y1 + γ2

N−1∏

i=2
ri y2 + γ3

N−1∏

i=3
ri y3 · · · + γN yN

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (7)

Denote pk as the summation of the k-th row in (7), then one has

p1 = γ1y1, pk = rk−1 pk−1 + γk yk, k = 2, · · · , N .

Based on this recursion formula, a fast implementation is proposed in Algorithm 2.

Algorithm 2 Fast L-CoLT Matrix-Vector multiplication

Input: input vector y of size N , input matrix ML = L- CoLT(γ , r)
Output: p = ML y
1: procedure LCMV( y, γ , r)
2: p1 = γ1y1
3: for i = 1 : N − 1 do
4: pi+1 = ri pi + γi+1yi+1

return p

Similarly, the fast matrix–vector multiplication for U-CoLT matrices is shown in Algorithm
3.
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Algorithm 3 Fast U-CoLT Matrix-Vector multiplication

Input: input vector y of size N , input matrix MU = U- CoLT(γ ′, r ′)
Output: q = MU y
1: procedure UCMV( y, γ ′, r ′)
2: qN = 0, qN−1 = γ ′

N−1yN
3: for i = 2 : N − 1 do
4: qN−i = r ′

N−i qN−i+1 + γ ′
N−i yN−i+1

return q

Next, we denote the set CN as the direct sum of CN
L and CN

U , defined by

Definition 2

CN = CN
L + CN

U =
{
A + B | A ∈ CN

L , B ∈ CN
U

}
. (8)

Due to the linearity of matrix–vector multiplication, we can further develop the fast matrix–
vector multiplication algorithm for matrices in CN , which is given in Algorithm 4.

Algorithm 4 CoLT Matrix-Vector multiplication

Input: input vector x of size N , diagonal elements γ , γ ′ and the ratio vector r, r ′
Output: p + q = M y
1: procedure CMV( y, r, r ′, γ , γ ′)
2: p = LCMV( y, γ , r)
3: q = UCMV( y, γ ′, r ′)

return p + q

The space and time complexities of these algorithms are O(N ), which is much better than
the original matrix–vector multiplication.

3.2 Some Basic Properties

In this subsection, we justify some basic properties of those matrices involved, which will
be used in our algorithm.

Theorem 2
(CN

L , �)
and

(CN
U , �)

are Abelian groups, where � is the Hadamard product.

Proof We only prove the theorem for
(CN

L , �)
. It suffices to show that

(CN
L , �)

has the
following properties:

Closure: For any two matrices A = L- CoLT(γ̂ , r̂) and B = L- CoLT(γ̃ , r̃), we set
D = A � B. Since di, j = ai, j bi, j , one has

di, j/di+1, j = (
ai, j bi, j

)
/
(
ai+1, j bi+1, j

) = r̂i r̃i , j = 1, 2, · · · , i, (9)

and the strictly upper triangle part of D is obviously 0, which means D = L- CoLT(γ̂ �
γ̃ , r̂ � r̃) ∈ CN

L .
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Identity and Inverses: Let

E =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1
1 1
1 1 1
...

...
...

. . .

1 1 1 · · · 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

∈ CN
L , (10)

then for any A = L- CoLT(γ , r), A � E = E � A = A, which means E is the identity
element. Let

B =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1/a11
1/a21 1/a22
1/a31 1/a32 1/a33

...
...

...
. . .

1/an1 1/an2 1/an3 · · · 1/ann

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Since

bi, j/bi+1, j = ai+1, j/ai, j = 1/ri , j = 1, 2, · · · , i,

then B ∈ CN
L . And obviously, A � B = B � A = E , which means B is the inverse of A.

Commutativity and Associativity: The commutativity and associativity can be derived
from the commutative and associative law of real number multiplication. ��

Based on the above theorem, we can deduce directly

Corollary 1
(CN , �)

is an abelian group with identity element 1N1TN .

Theorem 3 For any vector x ∈ (R\{0})N , fx (M) = (diag (x)) M and gx (M) =
M (diag (x)) are permutations in CN

L and CN
U .

Proof We only prove the theorem for CN
L .

Closure: For any vector x ∈ (R\{0})N , and ML = L- CoLT(γ , r), let E be the one
defined in Equation (10). Since

E1 = (diag (x)) E =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

x1
x2 x2
x3 x3 x3
...

...
...

. . .

xn xn xn · · · xn

⎞

⎟
⎟
⎟
⎟
⎟
⎠

∈ CN
L ,

E2 = E (diag (x)) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

x1
x1 x2
x1 x2 x3
...

...
...

. . .

x1 x2 x3 · · · xn

⎞

⎟
⎟
⎟
⎟
⎟
⎠

∈ CN
L ,

we have

fx (M) = (diag (x)) M = (diag (x)) E � M = E1 � M ∈ CN
L ;

gx (M) = M (diag (x)) = M � E (diag (x)) = M � E2 ∈ CN
L .

(11)
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The last set membership can be derived by the closure of
(CN

L , �)
proved in Theorem 2.

Hence, fx and gx are maps from CN
L to itself.

Injectiveness: For any two matrices A = L- CoLT(γ̂ , r̂) and B = L- CoLT(γ̃ , r̃), let
D1 be the inverse of E1 and D2 be the inverse of E2. If fx (A) = fx (B), then

A = D1 � E1 � A = D1 � fx (A) = D1 � fx (B) = D1 � E1 � B = B.

If gx (A) = gx (B), then

A = A � E2 � D2 = gx (A) � D2 = gx (B) � D2 = B � E2 � D2 = B,

which means fx (·) and gx (·) are injective functions.
Surjectiveness: For any M ∈ CN

L , let Q1 = D1 � M and Q2 = M � D2, then

fx (Q1) = E1 � D1 � M = E � M = M;
gx (Q2) = M � D2 � E2 = M � E = M,

which means fx (·) and gx (·) are surjective functions. ��
Corollary 2 fx (·) and gx (·) are permutations in CN .

4 The Fast Sinkhorn II

In this section, we will discuss the implementation details to accelerate IPOT. In Algorithm
1, three parts lead to O(N 2) algorithm complexity, i.e., the matrix Hadamard product (line
4), the matrix–vector multiplication (lines 6–7), and the matrix scaling (line 8). They all rely
on the representation and manipulation of L/U CoLT matrices.

For two discrete distributions on a 1D uniform mesh grid with a grid spacing of h, by
introducing the notation λ = e−h/δ , the kernel matrix K is written as

K =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 λ λ2 · · · λN−1

λ 1 λ · · · λN−2

λ2 λ 1 · · · λN−3

...
...

...
. . .

...

λN−1 λN−2 λN−3 · · · 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

∈ CN . (12)

Below we discuss step by step of IPOT (Algorithm 1) to reduce the complexity:

– line 2:� = 1N1TN ∈ CN , we only need four vectors (γ , γ ′, r, r ′) to represent� according
to Theorem 1.

– line 4: the matrix Hadamard product Q = K � � ∈ CN according to Theorem 2 and
Corollary 1. By updating the four representation vectors (γ , γ ′, r, r ′), we can obtain Q
with O(N ) cost.

– lines 6–7: thematrix–vectormultiplication QTφ and Qψ can be implementedwith O(N )

cost according to Algorithm 4.
– line 8: the matrix scaling � = diag(φ)Qdiag(ψ) ∈ CN according to Theorem 3 and

Corollary 2. By updating the four representation vectors (γ , γ ′, r, r ′), we can obtain �

with O(N ) cost.

Based on the above discussions, we proposed the FS-2 algorithm with O(N ) complexity.
The pseudo-code is presented in Algorithm 5.
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Algorithm 5 1D FS-2 Algorithm

Input: u, v ∈ R
N ; L, itr_max ∈ N

+; h, δ ∈ R

Output: W1(u, v)

1: λ ← e−h/δ; φ,ψ ← 1
N 1N ; r, s ← 0N

2: αL , βL , αU , βU ← λ1N−1; γ ← 1N ; γ ′ ← λ1N−1

3: for t = 1 : itr_max do
4: for 
 = 1 : L do
5: r ← CMV(φ,βL ,βU , γ , γ ′)
6: ψ ← v 	 r
7: s ← CMV(ψ,αL ,αU , γ , γ ′)
8: φ ← u 	 s
9: for i = 1 : N − 1 do
10: αL

i ← λαL
i (φi+1/φi ), βL

i ← λβL
i (ψi+1/ψi )

11: γ ′
i ← λγ ′

i φiψi+1

12: for i = 1 : N − 2 do
13: αU

i ← λαU
i (φi/φi+1), βU

i ← λβU
i (ψi/ψi+1)

14: γ ← φ � ψ � γ
return W1(u, v)

There is a minor flaw in the above algorithm. The computational cost of W1(u, v) is still
O(N 2) in the last step. This was also ignored in our previous paper [24]. Now, we would
like to discuss this issue. The computation of W1 (u, v) = 〈C, �〉 can be regarded as the
summation of all elements of the following matrix.

C � � =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 hγ ′
1 2hγ ′

2r
′
1 · · · (N−1)hγ ′

N−1
N−2∏

i=1
r ′
i

hγ1r1 0 hγ ′
2 · · · (N−2)hγ ′

N−1
N−2∏

i=2
r ′
i

2hγ1r1r2 hγ2r2 0 · · · (N−3)hγ ′
N−1

N−2∏

i=3
r ′
i

...
...

...
. . .

...

(N−1) hγ1
N−1∏

i=1
ri (N−2) hγ2

N−1∏

i=2
ri (N−3) hγ3

N−1∏

i=3
ri · · · 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(13)
We separate the summation of the matrix to the lower and strictly upper triangular parts.
Thus, the k-th line summation of two parts can be written as

pk =
k∑

i=1

ωki , qk =
N∑

i=k+1

ωki .

We can consider the following recursive computation

p1 = 0, p2 = hγ1r1, p′
2 = hγ1r1 + hγ2,

pi = ri−1
(
pi−1 + p′

i−1

)
, p′

i = ri−1 p
′
i−1 + hγi , i = 3, 4, · · · , N .

qN = 0, qN−1 = hγ ′
N−1, q ′

N−1 = r ′
N−2qN−1 + hγ ′

N−2,

q j = r ′
j q j+1 + q ′

j+1, q ′
j = r ′

j−1q
′
j+1 + hγ ′

j−1, j = 2, 3, · · · , N − 2,

q1 = r ′
1q2 + q ′

2.

(14)
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Thus, the Wasserstein-1 metric can be finally obtained with O(N ) cost

W1(u, v) = 〈C, �〉 =
N∑

i=1

(pi + qi ) .

5 Extension to High Dimension

In this section, we illustrate how the FS-2 algorithm generalizes to higher dimensions using
the two-dimensional case as an example.

5.1 Block Collinear Triangular Matrix

Hereinafter, for A ∈ R
MN×MN , we break it into M2 uniform blocks with size N × N :

A =

⎛

⎜
⎜
⎜
⎝

A1,1 A1,2 A1,3 · · · A1,M

A2,1 A2,2 A2,3 · · · A2,M
...

...
...

. . .
...

AM,1 AM,2 AM,3 · · · AM,M

⎞

⎟
⎟
⎟
⎠

.

And for vectors x ∈ R
kN , we break it into k uniform blocks as

(
xT1 , xT2 , · · · , xTk

)T
, in which

xi = (
x1+(i−1)N , x2+(i−1)N , · · · , xi N

)T
, i = 1, 2, · · · , k.

To carry out the fast implementation of the matrix–vector multiplication of the block matrix
above, we generalize the definition of CN in (8) to the block case as

Definition 3

CN ,M = {A ∈RMN×MN |Ak,k ∈ CN ; rL , rU ∈ (R\{0})(M−1)N ;
Ai+1, j =

(
diag

(
rLi

))
Ai, j , j ≤ i; Ai−1, j =

(
diag

(
rUi−1

))
Ai, j , i ≤ j}.

Since CN ,M is a generalization of CN , we can also use the strategy of Algorithm 4 in blocks
to reduce the computational cost of matrix–vector multiplications. For a vector x ∈ R

NM ,
the matrix–vector multiplication Ax is written as

Ax =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

A1,1x1 + A1,2x2 + A1,3x3 · · · + A1,M xM

A2,1x1 + A2,2x2 + A2,3x3 · · · + A2,M xM

A3,1x1 + A3,2x2 + A3,3x3 · · · + A3,M xM
...

...
...

...
...

. . .
...

...

AM,1x1 + AM,2x2 + AM,3x3 · · · + AM,M xM

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (15)

We separate the summation of row k to the lower triangular part pk and the strictly upper
triangular part qk . Then computing Ax is formulated as

Ax = p + q, pk =
k∑

i=1

Ak,i xi , qk =
M∑

i=k+1

Ak,i xi , k = 1, · · · , M .
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If A is in CN ,M with rL and rU , instead of directly calculating pk and qk , a successive
computation is used

p1 = A1,1x1, pk = rLk−1 � pk−1 + Ak,kxk, k = 2, · · · , M,

qM = 0N , qk−1 = rUk−1 � (qk + Ak,kxk), k = M, M − 1, · · · , 2.
(16)

Since the computationof Ak,kxk canbe carried outwithO(N ) complexity byusingAlgorithm
4, the whole computation is of O(NM) complexity.

Similar to Theorem 2 and Theorem 3, CN ,M is closed under the Hadamard product and
matrix scaling.

Theorem 4
(CN ,M ,�)

is an Abelian group; Matrix scaling operations are permutations in
CN ,M.

Proof For any A ∈ CN ,M , since the diagonal blocks of A are in CN , by Corollary 2, all blocks
in A are in CN . Then the two properties can be proved in a similar way as in Sect. 3.2. ��

5.2 The 2D FS-2 Algorithm

Consider two discretized probabilistic distributions

u = (
u11, u21, · · · , uN1, u12, · · · , ui1 j1 , · · · , uNM

)
,

v = (
v11, v21, · · · , vN1, v12, · · · , vi2 j2 , · · · , vNM

)
,

on a uniform 2D mesh of size N × M with a vertical spacing of h1 and a horizontal spacing
of h2. The corresponding kernel matrix is written as

K =

⎛

⎜
⎜
⎜
⎜
⎝

K0 λ2K0 λ22K0 · · · λM−1
2 K0

λ2K0 K0 λ2K0 · · · λM−2
2 K0

...
...

...
. . .

...

λM−1
2 K0 λM−2

2 K0 λM−3
2 K0 · · · K0

⎞

⎟
⎟
⎟
⎟
⎠

,

where the sub-matrix

K0 =

⎛

⎜
⎜
⎜
⎝

1 λ1 · · · λN−1
1

λ1 1 · · · λN−2
1

...
...

. . .
...

λN−1
1 λN−2

1 · · · 1

⎞

⎟
⎟
⎟
⎠

,

and

λ1 = e−h1/δ, λ2 = e−h2/δ.

Obviously, the original 2D kernel K contains blocks which are multiples of the 1D kernel,
hence belongs to CN ,M . By an analysis similar to that in Sect. 4 and using Theorem 4, the
matrices Q and � are in CN ,M throughout the course of the iteration, which means that all
the matrix–vector multiplications can be carried out by using recursion (16). Thus, the total
cost of matrix–vector multiplication of our FS-2 algorithm for 2D Wasserstein-1 metric is
reduced to O(NM).

In the 2D FS-2 algorithm, we use ‘̂’ to distinguish whether it is a coefficient of the block
or the inner sub-matrix, and update them simultaneously after an inner loop. The pseudo-code
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is presented in Algorithm 6. Updating the coefficients of inner sub-matrices and computation
of W1 (u, v) are omitted in the pseudo-code since they are similar to the 1D case, which we
have described in detail.

Algorithm 6 2D FS-2 Algorithm

Input: u, v ∈ R
NM ; L, itr_max ∈ N

+; h1, h2, δ ∈ R

Output: W1(u, v)

1: λ1 ← e−h1/δ; λ2 ← e−h2/δ; φ(0),ψ (0) ← 1
NM 1NM ; p(0), r(0), q(0), s(0) ← 0NM

2: γ ← 1NM , γ ′, αL , βL ← λ11(N−1)M , αU , βU ← λ11(N−2)M

3: α̂L , β̂
L
, α̂U , β̂

U ← λ1N (M−1)
4: while t = 1 : itr_max do
5: for 
 = 1 : L do
6: r1 ← CMV(φ1, β1), sM ← 0N
7: for i = 1 : M − 1 do
8: r i+1 ← β̂

L
i � r i + CMV(φi+1,β

L
i+1,β

U
i+1, γ i+1, γ

′
i+1)

9: sN−i← β̂
U
N−i�(sN−i+1+CMV(φN−i+1,β

L
N−i+1,β

U
N−i+1, γN−i+1, γ

′
N−i+1))

10: ψ ← v 	 (r + s)
11: p1 ← CMV(ψ1, α1), qM ← 0N
12: for i = 1 : M − 1 do
13: pi+1 ← α̂L

i � pi + CMV(ψ i+1,α
L
i+1,α

U
i+1, γ i+1, γ

′
i+1)

14: qN−i← α̂U
N−i�(qN−i+1+CMV(ψN−i+1,αL

N−i+1,α
U
N−i+1, γN−i+1, γ

′
N−i+1))

15: φ ← u 	 ( p + q)

16: for i = 1 : M − 1 do
17: α̂L

i ← λ2
(
φi+1/φi

) � α̂L
i , β̂

L
i ← λ2

(
ψ i+1/ψ i

) � β̂
L
i

18: α̂U
i ← λ2

(
φi/φi+1

) � α̂U
i , β̂

U
i ← λ2

(
ψ i/ψ i+1

) � β̂
U
i

19: Update γ , γ ′, αL , βL , αU , βU

return W1(u, v)

6 Numerical Experiments

In this section, we carry out three numerical experiments to evaluate the FS-2 algorithm,
includingone1Dexample and two2Dexamples. The trueWassersteinmetricWLP is obtained
by solving the original OT (1) using interior-point methods [11, 20].In our experiments, the
entropy regularization parameter ε of FS-1 is selected as 1/20, 1/80 and 1/320; for IPOT
and FS-2, the number of inner loops is set as L = 20 and the regularization parameter δ(t) is
set to 1. The number of iterations here is the total number of loops: #iteration = itr_max×L .
All the experiments are conducted on the uniform mesh with N grid points (1-dimension) or
N × N grid points (2-dimension). In order to deal with the difficulties caused by zeros, we
utilize the rescaling method in [23]:

D( f , g) = W1

( | f |
‖ f ‖ + η

1 + Nη
,

|g|
‖g‖ + η

1 + Nη

)

, (17)
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Fig. 1 The 1D Gaussian
distribution problem. The errors
between the numerical results
generated by FS-1 or FS-2 and
the true Wasserstein-1 metric
w.r.t. number of iterations

In the following, we refer to formula (17) for numerical stability with η = 10−5. All the
experiments are conducted on a platform with 128G RAM, and one Intel(R) Xeon(R) Gold
5117 CPU @2.00GHz with 14 cores.

6.1 1D Gaussian Distributions

We consider the Wasserstein-1 metric between two mixtures of 1D Gaussian distributions:
0.4N (60, 64)+ 0.6N (40, 36) and 0.5N (35, 81)+ 0.5N (70, 81), which is the experiment
setting in [35]. Input vectors u and v are generated by integration on the uniformdiscretization
of interval [0, 100] with node size N .

We first compare the convergence of FS-1 and FS-2 for N = 1000. We tested 100 experi-
ments, and each experiment was performed for 10, 000 iterations. In Fig. 1, the differences of
the Wasserstein-1 metric between the true solution WLP and the numerical solutions gener-
ated by FS-1 and FS-2 are depicted. As expected, as ε decreases, the error of FS-1 decreases
gradually after the iterations converge. We can observe this for ε = 1/20 and ε = 1/80.
However, for ε = 1/320, we can not observe convergence. In fact, the error does not drop
over 10, 000 iterations. This is because ε is too small, making updates extremely slow. In
fact, after 20, 000 iterations, the result of ε = 1/320 will continue to drop, and the final error
is smaller than that of ε = 1/20 and ε = 1/80. However, in any case, the results of FS-1 are
far inferior to those of FS-2, both in terms of accuracy and convergence rate.

The averaged computational time of the IPOT method and the FS-2 algorithm is given
in Table 1 and Fig. 2 (left). Apparently, the FS-2 algorithm has achieved an overwhelming
advantage over the IPOT method in terms of computational speed, and ensures that the
transport plans of the two are almost the same. This replicates the advantages of the FS-1
algorithm over the Sinkhorn algorithm. According to the data fitting results, the empirical
complexity of the FS-2 algorithm is O(N 1.07), which is much smaller than the O(N 2.40)

complexity of the IPOT method. At last, we show the computational time required to reach
the absolute error of the Wasserstein-1 metric for N = 1, 000 in Fig. 2 (right). Clearly, the
FS-2 algorithm has an advantage of two orders of magnitude in computational time compared
to the IPOT method.

6.2 2D RandomDistributions

Next, we compute theWasserstein-1 metric between two N ×N dimensional random vectors
whose elements obey the uniform distribution on (0, 1). Without loss of generality, we set
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Table 1 The 1D Gaussian distribution problem

N Computational time (s) Speed-up ratio ‖PFS − P‖F
FS-2 IPOT

500 1.25 × 10−2 1.22 × 100 9.76 × 101 2.09 × 10−15

2000 4.95 × 10−2 3.73 × 101 7.52 × 102 6.65 × 10−16

8000 2.32 × 10−1 8.41 × 102 3.63 × 103 8.57 × 10−16

The comparison between the IPOTmethod and the FS-2 algorithm with the different number
of grid points N . Columns 2–4 are the averaged computational time of the two algorithms and
the speed-up ratio of the FS-2 algorithm. Column 5 is the Frobenius norm of the difference
between the transport plan computed by the two algorithms

Fig. 2 The 1D Gaussian distribution problem. Left: The comparison of computational time between the FS-2
algorithm and the IPOT method with different numbers of grid points N . Right: The computational time
required to reach the absolute error of the Wasserstein-1 metric

Fig. 3 The 2D random
distribution problem. The errors
between the numerical results
generated by FS-1 or FS-2 and
the true Wasserstein-1 metric
w.r.t. number of iterations

h1 = h2 = 0.1. We also tested 100 experiments, and each experiment was performed for
10, 000 iterations. We hope to test the performance of the FS-2 algorithm in 2D through this
example. The differences in the Wasserstein-1 metric between the true solution WLP and
the numerical solutions generated by FS-1 and FS-2 are shown in Fig. 3. From this, we can
observe that FS-1 converges quickly for ε = 1/20, but the error is large. When ε = 1/80,
the iteration converges at about 5, 000 steps. The error keep decreasing even after 10, 000
steps for ε = 1/320. However, their errors and convergence speed are not as good as FS-2.

The averaged computational time of the IPOT method and the FS-2 algorithm is given
in Table 2 and Fig. 4 (left). According to the data fitting results, the empirical complexity
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Table 2 The 2D random distribution problem

N×N Computational time (s) Speed-up ratio ‖PFS − P‖F
FS-2 IPOT

20×20 2.24 × 10−2 4.88 × 10−1 2.18 × 101 2.40 × 10−16

40×40 7.74 × 10−2 1.34 × 101 1.73 × 102 1.52 × 10−16

80×80 3.38 × 10−1 4.79 × 102 1.42 × 103 1.40 × 10−16

160×160 1.42 × 100 1.46 × 104 1.03 × 104 8.51 × 10−17

320×320 6.31 × 100 − − −
The comparison between the IPOTmethod and the FS-2 algorithmwith different total number
of grid nodes N×N . Columns 2–4 are the averaged computational time of the two algorithms
and the speed-up ratio of the FS-2 algorithm.Column5 is the Frobenius normof the difference
between the transport plan computed by the two algorithms

Fig. 4 The 2D random distribution problem. Left: The comparison of computational time between the FS-2
algorithm and the IPOT method with different numbers of grid points N . Right: The computational time
required to reach the absolute error of the Wasserstein-1 metric

of the FS-2 algorithm is O(N 2.05), which is much smaller than the O(N 4.98) complexity
of the IPOT method. The computational time required to reach the absolute error of the
Wasserstein-1 metric for N × N = 32 × 32 is also presented in Fig. 4 (right). Similar to
the previous subsection, we can also observe the huge computational efficiency of the FS-2
algorithm over the IPOT method.

6.3 ImageMatching Problem

The final experiment tests the performance of our FS-2 algorithm for high-resolution image
matching. This is a successful application of the Optimal Transport [4, 7, 17]. We select two
images from the DIV2K dataset [1]. Through a process similar to Sect. 5.4 in the manuscript
[24], we compute the Wasserstein-1 metric between the two images. The differences in the
Wasserstein-1 metric between the true solution WLP and the numerical solutions generated
by FS-1 and FS-2 are depicted in Fig. 6. We also present the averaged computational time
of the IPOT method and the FS-2 algorithm in Table 3. Moreover, the computational time
required to reach the absolute error of the Wasserstein-1 metric for N × N = 32 × 32 is
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Fig. 5 The image matching problem. Illustration of images

Fig. 6 The image matching
problem. The errors between the
numerical results generated by
FS-1 or FS-2 and the true
Wasserstein-1 metric w.r.t.
number of iterations

Table 3 The image matching problem

N × N Computational time (s) Speed-up ratio ‖PFS − P‖F
FS-2 IPOT

100×100 5.16 × 10−1 1.44 × 103 2.79 × 103 6.44 × 10−17

200×200 2.31 × 100 3.69 × 104 1.60 × 104 4.65 × 10−17

400×400 9.69 × 100 − − −
800×800 4.18 × 101 − − −
The comparison between the IPOT method and the FS-2 algorithm with the different total
number of grid nodes N × N . Columns 2–4 are the averaged computational time of the two
algorithms and the speed-up ratio of the FS-2 algorithm. Column 5 is the Frobenius norm of
the difference between the transport plan computed by the two algorithms

shown in Fig. 7. From these results, we can get the same conclusion as before, that is, the
FS-2 algorithm seems to be the numerical algorithm with the fastest convergence and the
lowest complexity for computing the Wasserstein-1 metric.
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Fig. 7 The image matching
problem. The computational time
required to reach the absolute
error of the Wasserstein-1 metric

7 Conclusion

As the follow-up of the FS-1 paper, we generalize the result of matrix–vector multiplication
at O(N ) costs for the special matrix to the more general L/U-CoLT matrix. We illustrate that
only two vectors are required to represent any L/U-CoLTmatrix.Moreover, we also prove the
closure of families of L/U-CoLT matrices to matrix Hadamard product and matrix scaling.
Therefore, the above matrix operations are essentially updating the representation vectors,
which reduce both time and space complexity to O(N ). These results can be directly applied
to the Inexact Proximal point method for Optimal Transport problem and reduce the overall
computational complexity to O(N ). From this, we develop the Fast Sinkhorn II algorithm.
It does not seem to be an overstatement that for the computation of the Wasserstein-1 metric,
we have probably obtained the most competitive method, both in terms of convergence speed
and computational complexity.
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