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The recentl y de v eloped adjoint-state trav eltime tomo graphy (ATT) method of fers an alternati ve
approach to conduct traveltime tomography without the need for ray tracing or waveform
modelling. Instead, it utilizes the eikonal equation to depict the minimal traveltime field
from an earthquake location to any position in the computational domain. The process of
tomographic inversion is formulated as an optimization problem with the goal of minimizing
the difference between observed and theoretical first arrival times, which is subsequently
solved using the efficient adjoint method. One advantage of differential arrival time data is
that it cancels or reduces the influence of common factors, making it more sensitive to a
specific subset of model parameters compared to first arri v al times. To take advantage of this
property, two variants of the ATT method are derived to determine velocity structure and
earthquake locations in this study. The first variant, adjoint-state common-source differential
arri v al time tomography (ATT-CS), uses common-source differential arrival times; while the
second v ariant, adjoint-state common-recei ver dif ferential arri v al time tomo graphy (ATT-CR),
inv erts common-receiv er differential arrival times. Numerical examples demonstrate that the
ATT-CS method is a valuable tool for imaging receiver-side fine-scale velocity structures.
Conversely, the ATT-CR method is well suited for resolving source-side velocity structures.
Dif ferential arri v al times also place constraints on earthquake locations. Compared to common-
source dif ferential arri v al times, common-recei ver dif ferential arri v al times are less sensiti ve
to velocity errors and suitable for earthquake location determination. Both common-source
and common-recei ver dif ferential arri v al times are considered first-order dif ferential arri v al
times. To demonstrate the ease with which the ATT method can be extended to higher-order
dif ferential arri v al times, we also deri ve the adjoint-state second-order dif ferential arri v al time
tomo graphy method. Finall y, we discuss how the adjoint-state tomo graphy methods address
multipathing. 

Key words: Inverse theory; Seismic tomography; Wave propagation. 

 I N T RO D U C T I O N  

if ferential arri v al times provide valuable constraints on earthquake locations and seismic structures of the Earth’s interior. For instance, the
 - P dif ferential arri v al time and sP - P dif ferential arri v al time can be used to deter mine ear thquake locations with high precision (e.g. Umino
t al. 1995 ; Waldhauser & Ellsworth 2000 ; Guo & Zhang 2017 ). In this study, we refer to the differential arrival time of the first P - or S -waves
rom two adjacent earthquakes to a common seismic station as common-recei ver dif ferential arri v al time, and similarl y for common-source
if ferential arri v al time (Fig. 1 ). Common-source and common-recei ver dif ferential arri v al times hav e been e xtensiv ely used to reveal velocity
eterogeneity of the crust and upper mantle (e.g. Zhang & Thurber 2003 ; Share et al. 2019 ; Liu et al. 2021 ; Guo et al. 2021 ; Chen et al.
022 ), such as teleseimic traveltime tomography frequently using common-source differential arrival times (e.g. Liu et al. 2018 ; Boyce et al.
019 ). Moreover, S - P dif ferential arri v al times can be inverted to deter mine the V P / V S ratio str ucture (e.g. Thurber et al. 1995 ; Zenonos et al.
020 ), PP - P dif ferential arri v al times are sensiti ve to the seismic structure of the upper mantle (Obayashi et al. 2004 ), and SmKS - SKKS
if ferential arri v al times impose constraints on the outermost core structure (Wu & Irving 2020 ). Additionally, though infrequently used
n previous studies, second-order differential arrival times (also known as triple-difference arrival times in previous research) have proven
f fecti ve in determining seismic velocity structure and accurately locating earthquakes (e.g. Guo & Zhang 2017 ; Guo et al. 2021 ). Note
C © The Author(s) 2023. Published by Oxford University Press on behalf of The Royal Astronomical Society. This is an Open Access 
article distributed under the terms of the Creative Commons Attribution License ( https://creati vecommons.org/licenses/b y/4.0/ ), which 
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Figure 1. A schematic diagram showing the paths (blue curves) of a first arri v al (left-hand panel), common-source differential arrival (middle panel) and 
common-recei ver dif ferential arri v al (right-hand panel) used in seismic tomo g raphic inversions. The red stars denote ear thquakes. Black inver ted triangles are 
seismic stations deployed on the surface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

that a second-order differential arrival time is the difference between two common-source differential arrival times recorded at the same
station pair, or the difference between two common-receiver differential arrival times generated by the same earthquake pair. In this scenario,
common-source differential arrival times and common-receiver differential arrival times are first-order differential arrival times. With the 
increasing number of dense seismic arrays worldwide and the growing use of fibre-optic distributed acoustic sensing in recent years (e.g.
Zhan 2020 ; Cheng et al. 2021 ), we anticipate an exponential growth in the number of measurable differential arrival times from high-quality
seismological recordings. 

This study focuses on seismic tomographic inversions using common-source differential arrival times and common-receiver differential 
arri v al times to construct subsurface velocity models and determine earthquake locations. As an alternative to ray-based traveltime tomography
methods (e.g. Thurber 1983 ; Zhang & Thurber 2003 ; Liu & Tong 2021 ), our approach uses the eikonal equation to simulate the traveltime
field of the first P or S wave, and the inverse problem of traveltime tomography is solved by the efficient adjoint method (e.g. Leung & Qian
2006 ; T aillandier et al. 2009 ; T avakoli et al. 2017 ; T ong 2021a ). The eikonal equation approach has the advantage of accurately computing
the minimal traveltime from the earthquake location to any position of interest (Rawlinson et al. 2008 ). Meanwhile, the adjoint method is a
popular method for the efficient computation of the gradient of an objective function in a mathematical optimization problem (e.g. Tromp
et al. 2005 ; Fichtner et al. 2006 ; Leung & Qian 2006 ). The so-called adjoint-state traveltime tomography (ATT) method recently developed
by Tong ( 2021a ) is one example that uses the adjoint method to solve the eikonal equation-constrained optimization problem. Unlike some
other methods of the same type (e.g. Leung & Qian 2006 ; Taillandier et al. 2009 ), the ATT method does not require the receivers to be placed
on the boundary of the computational or physical domain. Fur ther more, it uses the good-perfor ming multiple-g rid model parametrization to
generate reliable inversion results. Importantly, the computational cost of the ATT method is one order of magnitude lower than that of wave
equation-based seismic tomography methods. 

In this study, our goal is to develop tomographic inversion schemes that make use of both common-source differential arrival times
and common-recei ver dif ferential arri v al times within the ATT framework. To facilitate the development, we provide a brief re vie w of the
ATT method in Section 2 , including the implementation of the multiple-grid model parametrization. In Section 3 , we derive the sensitivity
kernels of the objective function with respect to velocity structure and earthquake parameters for both common-source and common-receiver 
dif ferential arri v al time tomo graphy methods. In Section 4 , we provide numerical tests that display various examples of sensitivity kernels and
the performance of the ATT method and the two differential arrival time tomography methods in recovering subsurface velocity heterogeneity
and earthquake locations. In Section 5 , we examine the resolving abilities of the different adjoint-state tomography methods and elucidate how
they address the challenge of multipathing. Finally, in Appendix A , we demonstrate the extension of the adjoint-state method to higher-order
dif ferential arri v al times b y deri ving the second-order dif ferential arri v al time tomo graphy method. In Appendix B , the eikonal equation-based
grid search method for earthquake location is derived. 

2  R E V I E W  O F  AT T  

We consider N earthquakes including natural earthquakes, induced seismicity and artificial explosions that occur at various locations x s , n ( s
is for source and n = 1, 2, ···, N ) within the Earth volume �, along with M seismic stations x r , m ( r is for receiver and m = 1, 2, ···, M ) situated
at or near the Earth’s surface ∂�. The eikonal equation with a point source condition describes the traveltime T n ( x ) of the first P or S wave
from the n th earthquake to any position x , which can be expressed as 

∇T n ( x ) · ∇T n ( x ) = s 2 ( x ) , T n ( x s,n ) = 0 . (1) 

Here s ( x ) is the P - or S -wave slowness, the reciprocal of wave speed (velocity). Throughout this discussion, slowness and velocity will be
used interchangeably. The arrival time observations T o n ( x r,m 

) at these M seismic stations can be inverted to retrieve an optimal slowness model

art/ggad416_f1.eps
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y minimizing the objective function 

( s( x ) ) = 

N ∑ 

n = 1 

M ∑ 

m = 1 

ω n,m 

2 

{
T n ( x r,m 

) − [
T o n ( x r,m 

) − τn 

]}2 
. (2) 

he weight coefficient ω n , m can be adjusted based on the quality and existence of the associated arri v al time T o n ( x r,m 

) . τ n is the origin time of
he n th earthquake. We distinguish between the theoretical traveltime from the earthquake location x s , n to the receiver location x r , m , denoted
s T n ( x r , m ), and the observed traveltime, referred to as T o n ( x r,m 

) − τn , with T o n ( x r,m 

) being the observed arri v al time. 
An infinitesimal perturbation δs ( x ) in the slowness model s ( x ) results in an infinitesimal perturbation δχ ( s ( x )) in the objective function

( s ( x )). Tong ( 2021a ) derived a mathematical relationship between these two perturbations, given by 

χ ( s( x ) ) = 

∫ 
�

N ∑ 

n = 1 
P n ( x ) s 

2 ( x ) 
δs( x ) 

s( x ) 
d x , (3) 

here P n ( x ) is the adjoint traveltime field that satisfies 

{ ∇ · [ P n ( x ) ∇ 

( −T n ( x ) ) ] = 

∑ M 

m = 1 ω n,m 

{
T n ( x r,m 

) − [
T o n ( x r,m 

) − τn 

]}
δ( x − x r,m 

) , x ∈ �

P n ( x ) = 0 , x ∈ ∂�. 
(4) 

he misfit kernel K s ( x ) that represents the Fr échet deri v ati ve of the objective function χ ( x ) with respect to the slowness s ( x ) can be expressed
y 

K s ( x ) = 

N ∑ 

n = 1 
P n ( x ) s 

2 ( x ) = 

N ∑ 

n = 1 
K s,n ( x ) = 

N ∑ 

n = 1 

M ∑ 

m = 1 
K s,n,m 

( x ) , (5) 

ere, K s , n ( x ) = P n ( x ) s 2 ( x ) is the event kernel associated with the n th earthquake, and K s , n , m ( x ) is the individual kernel related to the pair
f the n th earthquake and m th seismic station. To compute the objective function value and the misfit kernel, we can use the efficient fast
weeping method (Zhao 2004 ; Leung & Qian 2006 ) to solve both the eikonal eq. ( 1 ) and the adjoint eq. ( 4 ). 

The multiple-grid approach, proposed by Tong et al. ( 2019 ) and Tong ( 2021a ), can be used to discretize the relative slowness perturbation
s ( x )/ s ( x ) in eq. ( 3 ). The approach uses H sets of component grids, each with L h grid nodes. It defines a series of basis functions B l , h ( x ) that
ave a support (non-zero values) locally around the l th node of the h th grid. In this study, the basis functions for trilinear interpolation are
hosen due to their simplicity and ef fecti veness. With an y chosen basis functions, slowness s ( x ) is approximated by ln s( x ) = 

∑ L h 
l= 1 C l,h B l,h ( x ) ,

here C l , h are the coefficients. Further, the relative slowness perturbation δs ( x )/ s ( x ) can be expressed by 

δs( x ) 

s( x ) 
= 

L h ∑ 

l= 1 
δC l,h B l,h ( x ) . (6) 

he multiple-grid model parametrization takes the average of all the interpolating functions as an estimate for the relative slowness perturbation 

δs( x ) 

s( x ) 
= 

1 

H 

H ∑ 

h = 1 

L h ∑ 

l= 1 
δC l,h B l,h ( x ) . (7) 

ubstituting eq. ( 7 ) into eq. ( 3 ) yields 

∂χ ( s( x ) ) 

∂C l,h 
= 

N ∑ 

n = 1 

1 

H 

∫ 
�

P n ( x ) s 
2 ( x ) B l,h ( x )dx . (8) 

he optimization problem ( 2 ) in an infinite-dimensional function space is reduced to a minimization problem in a finite-dimensional vector
pace. The gradient vector for the minimization problem is gi ven b y eq. ( 8 ). Optimization algorithms such as the step-size-controlled gradient
escent method (Tong 2021a ) can be utilized to find an optimal solution for ( C 1 , 1 , C 2 , 1 , · · · , C L 1 , 1 , C 1 , 2 , · · · , C L H ,H ) and ultimately, an
ptimal slowness or velocity model. 

Errors in earthquake locations also contribute to the discrepancy between observed and theoretical traveltimes. When earthquake
ocations are unknown, it becomes cr ucial to deter mine seismic velocity and earthquake locations simultaneously. As a result, the objective
unction can be expanded from eq. ( 2 ) to include hypocentres x s, n and origin times τ n , given by 

( s( x ) , x s, 1 , τ1 , · · · , x s,n , τn , · · · , x s,N , τN ) = 

N ∑ 

n = 1 

M ∑ 

m = 1 

ω n,m 

2 

{
T n ( x r,m 

) − [
T o n ( x r,m 

) − τn 

]}2 
. (9) 
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Following the work of Tong ( 2021a ), the full deri v ati ve of the objective function can be expressed by 

δχ ( s( x ) , x s, 1 , τ1 , · · · , x s,n , τn , · · · , x s,N , τN ) = 

∫ 
�

N ∑ 

n = 1 
P n ( x ) s 

2 ( x ) 
δs( x ) 

s( x ) 
dx 

+ 

N ∑ 

n = 1 

M ∑ 

m = 1 
ω n,m 

{
T n ( x r,m 

) − [
T o n ( x r,m 

) − τn 

]} [
δx s,n · ∇� m 

( x s,n ) + δτn 

]
, (10) 

where � m ( x ) is the traveltime field initiated at the m th receiver location x r , m , and � m ( x s , n ) = T n ( x r , m ) holds based on the reciprocity principle
(Aki & Richards 2002 ). One can utilize eq. ( 10 ) in conjunction with multiple-grid model parametrization to determine both velocity structure
and earthquake locations simultaneously. 

3  A D J O I N T - S TAT E  D I F F E R E N T I A L  A R R I VA L  T I M E  T O M O G R A P H Y  

In comparison with first arri v al times, dif ferential arri v al times have the potential to generate higher-resolution images of specific target regions.
Common-source differential arrival times can mitigate the influence of errors in source locations and near-source structural heterogeneity, 
thereby improving the resolution of receiver-side models (e.g. Yuan et al. 2016 ; Zhang et al. 2017 ). Conversel y, common-recei ver dif ferential
arri v al times can ef fecti vel y constrain source-side structures by reducing the complex effects caused by receiver-side heterogeneity (e.g. Zhang
& Thurber 2003 ; Thurber et al. 2006 ; Allam & Ben-Zion 2012 ). Moreover, differential arrival times extracted from similar seismograms
generally exhibit higher accuracy compared to first arri v al time measurements (e.g. Shearer 1997 ; Zhang & Thurber 2003 ). 

This section develops two methods of differential arrival time tomography: adjoint-state common-source differential arrival time tomog- 
raphy (ATT-CS) and adjoint-state common-recei ver dif ferential arri v al time tomo graphy (ATT-CR). Additionall y, since accurate earthquake
locations are essential for constructing reliable seismic velocity models and these two types of data possess unique capabilities in pinpointing
ear thquake locations, ear thquake location methods using common-source differential arrival times and common-receiver differential arrival 
times have been developed and incorporated into the two differential arri v al time tomography methods. 

3.1 Velocity estimation using common-source differential arrival times 

The first P - or S -wave arrivals of an earthquake occurring at x s , n ( n = 1, 2, ···, N ) are recorded by two seismic stations x r , m and x r , k 
( m, k = 1 , 2 , · · · , M). By comparing the observed arri v al time dif ference T o n ( x r,m 

) − T o n ( x r,k ) , which is equi v alent to the observ ed trav eltime
difference in this particular context, to the theoretical traveltime difference T n ( x r , m ) − T n ( x r , k ) computed using the slowness model s ( x ), an
optimal slowness model for the subsurface structure can be determined. The objective function is defined as 

χ ( s( x ) ) = 

M ∑ 

m = 1 

M ∑ 

k= 1 

N ∑ 

n = 1 

ω 

m, k 
n 

2 

{[
T n ( x r,m 

) − T n ( x r,k ) 
] − [

T o n ( x r,m 

) − T o n ( x r,k ) 
]}2 

. (11) 

The weight coefficient ω 

m,k 
n reflects the existence and quality of the observed arri v al time difference T o n ( x r,m 

) − T o n ( x r,k ) . ω 

m,k 
n = ω 

k,m 

n is
al wa ys assumed. 

Directl y dif ferentiating eq. ( 11 ) with respect to T n ( x ), the variation of the objective function due to an infinitesimal perturbation δs ( x ) in
the slowness model s ( x ) can be expressed by 

δχ ( s( x ) ) = 

M ∑ 

m = 1 

M ∑ 

k= 1 

N ∑ 

n = 1 
ω 

m,k 
n 

{[
T n ( x r,m 

) − T n ( x r,k ) 
] − [

T o n ( x r,m 

) − T o n ( x r,k ) 
]} [

δT n ( x r,m 

) − δT n ( x r,k ) 
]

= 

M ∑ 

m = 1 

M ∑ 

k= 1 

N ∑ 

n = 1 

∫ 
�

2 ω 

m,k 
n 

{[
T n ( x r,m 

) − T n ( x r,k ) 
] − [

T o n ( x r,m 

) − T o n ( x r,k ) 
]}

δT n ( x ) δ( x − x r,m 

)dx . (12) 

According to eq. ( 1 ) and under first-order approximation, the traveltime perturbation δT n ( x ) caused by δs ( x ) satisfies 

∇ [ T n ( x ) ] · ∇ [ δT n ( x ) ] = s ( x ) δs ( x ) . (13) 

Multiply an arbitrary test function P n ( x ) on both sides of eq. ( 13 ) and integrate over the Earth volume �∫ 
�

P n ( x ) ∇ [ T n ( x ) ] · ∇ [ δT n ( x ) ] dx = 

∫ 
�

P n ( x ) s ( x ) δs ( x )dx . (14) 

Using the divergence theorem and assuming that P n ( x ) = 0 on the boundary ∂�, we obtain ∫ 
δT n ( x ) ∇ · [ P n ( x ) ∇ 

( −T n ( x ) ) ] dx = 

∫ 
P n ( x ) s ( x ) δs ( x )dx . (15) 
� �
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pon directly comparing eq. ( 12 ) and eq. ( 15 ), we can make a second assumption regarding P n ( x ) 

 · [ P n ( x ) ∇( −T n ( x )) ] = 

M ∑ 

m = 1 

M ∑ 

k= 1 
2 ω 

m,k 
n 

{[
T n ( x r,m 

) − T n ( x r,k ) 
] − [

T o n ( x r,m 

) − T o n ( x r,k ) 
]}

δ( x − x r,m 

) . (16) 

ollowing that, we can rewrite eq. ( 12 ) as 

χ ( s( x ) ) = 

N ∑ 

n = 1 

∫ 
�

P n ( x ) s( x ) δs( x )dx . (17) 

t is possible to express eq. ( 17 ) in a more concise form 

χ ( s( x ) ) = 

∫ 
�

K s ( x ) 
δs( x ) 

s( x ) 
dx , (18) 

here the misfit kernel is 

K s ( x ) = 

N ∑ 

n = 1 
K s,n ( x ) = 

N ∑ 

n = 1 
P n ( x ) s 

2 ( x ) . (19) 

fter computing the misfit kernel ( 19 ), we can utilize the multiple-grid model parametrization and the step-size-controlled gradient descent
ethod (Tong 2021a ) to find an optimal solution for the objective function ( 11 ). This process will ultimately lead to obtaining an optimal

elocity model for the subsurface. 
It is worth noting that, according to eq. ( 16 ), P n ( x ) is an adjoint field generated by back-transporting the observational discrepancy at

ach receiver back to the source location along the direction ∇( − T n ( x )). We have made two key assumptions regarding P n ( x ): first, that
 n ( x ) = 0 on the boundary ∂�, and secondly, that it satisfies a general first-order partial differential eq. ( 16 ). These assumptions are both
ecessary and physically accurate for defining a unique P n ( x ), which begins with an arbitrary test function. 

.2 Velocity estimation using common-r ecei ver differ ential arri v al times 

irst P or S waves emanating from two separate earthquakes x s , n and x s , j are recorded by the same seismic station at x r , m . A non-trivial
ifference between the theoretical traveltime difference T n ( x r , m ) − T j ( x r , m ) e v aluated in the slowness model s ( x ) and the observed traveltime
ifference 

[
T o n ( x r,m 

) − τn 

] − [
T o j ( x r,m 

) − τ j 

]
indicates the necessity to update s ( x ) to match the true slowness model. This can be achieved

y minimizing the following objective function 

( s( x ) ) = 

N ∑ 

n = 1 

N ∑ 

j= 1 

M ∑ 

m = 1 

ω 

m 

n, j 

2 

{[
T n ( x r,m 

) − T j ( x r,m 

) 
] − [

T o n ( x r,m 

) − T o j ( x r,m 

) − τn + τ j 

]}2 
. (20) 

n infinitesimal perturbation of δs ( x ) in the slowness s ( x ) causes the perturbations in the traveltime fields T n ( x ) and T j ( x ) and consequently
he perturbation in the objective function χ ( s ( x )). If we assume ω 

m 

n, j = ω 

m 

j,n , then the perturbation in the objective function has a relatively
imple expression, 

χ ( s( x ) ) = 

N ∑ 

n = 1 

N ∑ 

j= 1 

M ∑ 

m = 1 

∫ 
�

2 ω 

m 

n, j 

{[
T n ( x ) − T j ( x ) 

] − [
T o n ( x ) − T o j ( x ) − τn + τ j 

]}
δT n ( x ) δ( x − x r,m 

)dx . (21) 

Same as the above, we introduce an adjoint function P n ( x ) that solves the following boundary value problem { ∇ · [ P n ( x ) ∇( −T n ( x )) ] = 

∑ N 
j= 1 

∑ M 

m = 1 2 ω 

m 

n, j 

{[
T n ( x ) − T j ( x ) 

] − [
T o n ( x ) − T o j ( x ) − τn + τ j 

]}
δ( x − x r,m 

) , x ∈ �

P n ( x ) = 0 , x ∈ ∂�. 
(22) 

hen, 

χ ( s( x ) ) = 

N ∑ 

n = 1 

∫ 
�

P n ( x ) s( x ) δs( x )dx = 

∫ 
�

K s ( x ) 
δs( x ) 

s( x ) 
dx , (23) 

here the misfit kernel is 

K s ( x ) = 

N ∑ 

n = 1 
K s,n ( x ) = 

N ∑ 

n = 1 
P n ( x ) s 

2 ( x ) . (24) 

he multiple-grid model parametrization and the step-size-controlled gradient descent method (Tong 2021a ) can be adopted to find an optimal
olution for the objective function ( 20 ). 
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3.3 Common-sour ce differ ential arri v al time earthquake location 

Consider N earthquakes ( x s , n , τ n ) ( n = 1, 2, ···, N ) and M seismic stations x r , m ( m = 1, 2, ···, M ). To relocate the n th earthquake ( x s , n , τ n ), we
can minimize an objective function that utilizes common-source differential arrival time data as follows, 

χ ( x s,n , τn ) = 

M ∑ 

m = 1 

M ∑ 

k= 1 

ω 

m,k 
n 

2 

{[
T n ( x r,m 

) − T n ( x r,k ) 
] − [(

T o n ( x r,m 

) − τn 

) − (
T o n ( x r,k ) − τn 

)]}2 
. (25) 

To facilitate the deri v ation of its deri v ati ves, we define a function similar to eq. ( 25 ), 

χ̄ ( x s,n , τn ) = 

M ∑ 

m = 1 

M ∑ 

k= 1 

ω 

m,k 
n 

2 

{[
� m 

( x s,n ) − � k ( x s,n ) 
] − [(

T o n ( x r,m 

) − τn 

) − (
T o n ( x r,k ) − τn 

)]}2 
, (26) 

where � m ( x ) is the traveltime field initiated at the m th receiver, and similar for � k ( x ). If there is an infinitesimal perturbation ( δx s , n , δτ n ) in
( x s , n , τ n ), then the corresponding perturbation in χ̄ ( x s,n , τn ) is 

δχ̄ ( x s,n , τn ) = 

M ∑ 

m = 1 

M ∑ 

k= 1 
ω 

m,k 
n 

{[
� m 

( x s,n ) − � k ( x s,n ) 
] − [

T o n ( x r,m 

) − T o n ( x r,k ) 
]} [∇� m 

( x s,n ) − ∇� k ( x s,n ) 
] · δx s,n , (27) 

The reciprocity principle asserts that the two functions ( 25 ) and ( 26 ) are al wa ys identical (Aki & Richards 2002 ), and so are their first
deri v ati ves as they depend on the same variables x s , n and τ n . Hence, exploiting the fact that � m ( x s , n ) = T n ( x r , m ) and � k ( x s , n ) = T n ( x r , k ), we
have 

δχ ( x s,n , τn ) = 

M ∑ 

m = 1 

M ∑ 

k= 1 
2 ω 

m,k 
n 

{[
� m 

( x s,n ) − � k ( x s,n ) 
] − [

T o n ( x r,m 

) − T o n ( x r,k ) 
]}∇� m 

( x s,n ) · δx s,n . (28) 

Eq. ( 28 ) defines an adjoint-state earthquake location method using common-source differential arrival times. Obviously, this earthquake 
location method has no constraints on earthquake origin times. 

3.4 Common-r ecei ver differ ential arri v al time earthquake location 

Using common-receiver differential arrival time data to locate earthquakes, in a similar manner, we define 

χ
(
x s,n , τn , x s, j , τ j 

) = 

M ∑ 

m = 1 

ω 

m 

n, j 

2 

{[
T n ( x r,m 

) − T j ( x r,m 

) 
] − [(

T o n ( x r,m 

) − τn 

) − (
T o j ( x r,m 

) − τ j 

)]}2 
, (29) 

and 

˜ χ
(
x s,n , τn , x s, j , τ j 

) = 

M ∑ 

m = 1 

ω 

m 

n, j 

2 

{[
� m 

( x s,n ) − � m 

( x s, j ) 
] − [(

T o n ( x r,m 

) − τn 

) − (
T o j ( x r,m 

) − τ j 

)]}2 
. (30) 

The first deri v ati ves of ˜ χ can be expressed by 

δ ˜ χ
(
x s,n , τn , x s, j , τ j 

) = 

M ∑ 

m = 1 
ω 

m 

n, j 

{[
� m 

( x s,n ) − � m 

( x s, j ) 
] − [(

T o n ( x r,m 

) − τn 

) − (
T o j ( x r,m 

) − τ j 

)]}

× [∇� m 

( x s,n ) · δx s,n − ∇� m 

( x s, j ) · δx s, j + δτn − δτ j 

]
. (31) 

The reciprocity principle also asserts that the two objective functions ( eq. 29 ) and ( eq. 30 ) are identical, and so are their first deri v ati ves. We
have 

δχ
(
x s,n , τn , x s, j , τ j 

) = 

M ∑ 

m = 1 
ω 

m 

n, j 

{[
� m 

( x s,n ) − � m 

( x s, j ) 
] − [(

T o n ( x r,m 

) − τn 

) − (
T o j ( x r,m 

) − τ j 

)]}

× [∇� m 

( x s,n ) · δx s,n − ∇� m 

( x s, j ) · δx s, j + δτn − δτ j 

]
. (32) 

By utilizing the gradient information provided by eq. ( 32 ), the accuracy of earthquake locations can be iterati vel y enhanced. 
Notab ly, the doub le-difference earthquake location algorithm proposed by Waldhauser & Ells worth ( 2000 ), w hich is widely used in

practice, involves the utilization of both first arri v al times and common-recei ver dif ferential arri v al times to determine hypocentre locations.
We can achieve the same results by combining eq. ( 10 ) without considering velocity perturbations and eq. ( 32 ). 

3.5 Differ ential arri v al time tomogra phy 

When neither precise earthquake locations nor an accurate velocity model are a vailable, w e can utilize common-source dif ferential arri v al
time data to determine an optimal seismic velocity model and earthquake locations simultaneously, using the adjoint-state common-source 
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if ferential arri v al time tomo graphy (ATT-CS) method. The objecti ve function of ATT-CS takes the following form 

χ ( s( x ) , x s, 1 , τ1 , · · · , x s,n , τn , · · · , x s,N , τN ) 

= 

M ∑ 

m = 1 

M ∑ 

k= 1 

N ∑ 

n = 1 

ω 

m,k 
n 

2 

{[
T n ( x r,m 

) − T n ( x r,k ) 
] − [

T o n ( x r,m 

) − T o n ( x r,k ) 
]}2 

. (33) 

ased on the discussion in Sections 3.1 and 3.3 , the first deri v ati ves of the objective function (eq. 33 ) can be expressed by 

δχ ( s( x ) , x s, 1 , τ1 , · · · , x s,n , τn , · · · , x s,N , τN ) = 

∫ 
�

K s ( x ) 
δs( x ) 

s( x ) 
dx 

+ 

N ∑ 

n = 1 

M ∑ 

m = 1 

M ∑ 

k= 1 
2 ω 

m,k 
n 

{[
� m 

( x s,n ) − � k ( x s,n ) 
] − [

T o n ( x r,m 

) − T o n ( x r,k ) 
]}∇� m 

( x s,n ) · δx s,n , (34) 

here the misfit kernel K s ( x ) is gi ven b y eq. ( 19 ). As discussed above, by combining the multiple-grid model parametrization and the
tep-size-controlled gradient descent method, we can ef fecti vel y search for an optimal slowness model and estimate earthquake hypocentres.
ommon-source differential arrival time data have no constraints on the origin time of each earthquake τ n . Ho wever , after obtaining an
ptimal slowness model s ( x ) and accurate earthquake hypocentres x s , n , if the observed arri v al times T o n ( x r, j ) ( j = 1, 2, ···, M ) are available,
e can equate the deri v ati ve of the objective function (eq. 9 ) with respect to τ n to zero (extreme value condition) in order to determine the
rigin time τ n , 

n = 

∑ M 

m = 1 ω n,m 

[
T o n ( x r,m 

) − T n ( x r,m 

) 
]

∑ M 

m = 1 ω n,m 

. (35) 

The adjoint-state common-receiver differential arrival time tomography (ATT-CR) method enables the utilization of common-receiver
if ferential arri v al time data to determine an optimal seismic velocity model and accurate earthquake locations. The objective function of
TT-CR is written as 

χ ( s( x ) , x s, 1 , τ1 , · · · , x s,n , τn , · · · , x s,N , τN ) 

= 

N ∑ 

n = 1 

N ∑ 

j= 1 

M ∑ 

m = 1 

ω 

m 

n, j 

2 

{[
T n ( x r,m 

) − T j ( x r,m 

) 
] − [

T o n ( x r,m 

) − T o j ( x r,m 

) − τn + τ j 

]}2 
. (36) 

ased on the discussion in Sections 3.2 and 3.4 , its first deri v ati ves can be computed by 

δχ ( s( x ) , x s, 1 , τ1 , · · · , x s,n , τn , · · · , x s,N , τN ) = 

∫ 
�

K s ( x ) 
δs( x ) 

s( x ) 
dx 

+ 

N ∑ 

n = 1 

N ∑ 

j= 1 

M ∑ 

m = 1 
2 ω 

m 

n, j 

{[
� m 

( x s,n ) − � m 

( x s, j ) 
] − [(

T o n ( x r,m 

) − τn 

) − (
T o j ( x r,m 

) − τ j 

)]} [∇� m 

( x s,n ) · δx s,n + δτn 

]
. (37) 

ere the misfit kernel K s ( x ) is given by eq. ( 24 ). 
If the sole requirement is velocity estimation, it is worth highlighting that source-receiver reciprocity can be ef fecti vel y utilized to

nterchange the roles of source and receiver. The primary distinction lies in the computational cost. In a scenario with N sources and
 recei vers, the common-recei ver approach requires N forward simulations (or 2 N forward simulations if the objective function value is

omputed first without saving the N traveltime fields), along with N adjoint simulations. Conversel y, b y using source-recei ver reciprocity, the
ommon-source approach requires M forward simulations and M adjoint simulations. The choice between the two approaches depends on
hich value is greater between M and N . 

In addition to first arri v al times, common-source differential arri v al times, and common-receiver differential arrival times, second-order
if ferential arri v al times (called triple-dif ference arri v al times in pre vious studies) hav e been prov en ef fecti v e in determining seismic v elocity
tructure and locating earthquakes (e.g., Guo & Zhang 2017 ; Guo et al. 2021 ). These advancements have been achieved through the utilization
f ray-based approaches. The adjoint-state method can also be used to leverage second-order differential arrival time data, sharing similarities
ith the ATT, ATT-CS and ATT-CR methods. We provide a brief description of the adjoint-state second-order differential arrival time

omography method in Appendix A . A thorough investigation and real data applications will be conducted in a separate study. 

 N U M E R I C A L  E X A M P L E S  A N D  D I S C U S S I O N  

ccuratel y and ef ficientl y solving the eikonal eq. ( 1 ) and the adjoint eqs ( 4 ), ( 16 ) and ( 22 ) is crucial for the numerical implementation of the
 TT, A TT-CS and A TT-CR methods. As frequently discussed in the literature, the f ast marching method and the f ast sweeping method are the

wo main types of numerical solvers for the eikonal equation (e.g. Sethian 1996 ; Zhao 2004 ; Rawlinson et al. 2008 ). Both methods can obtain
ccurate numerical approximations to the viscosity solution of the eikonal equation. Mathematically, a viscosity solution satisfies the eikonal
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Figure 2. Performance demonstration of the ATT method. (a) A verticall y v arying velocity model v ( x ). The red stars are 100 randomly distributed earthquakes. 
The blue inverted triangles denote 25 seismic stations. (b) The relativ e v elocity perturbation 	 v ( x )/ v ( x ) of the target model from the initial model in (a). (c) 
An example of an individual kernel. (d) An example of an event kernel corresponding to the same earthquake in (c). (e) The misfit kernel of the objective 
function. (f) The inverted relative velocity perturbation after 40 iterations. The white curves in (c) and (d) are traveltime isochrones at an interval of 2 s. All 
the sensitivity kernels in (c)–(e) are with respect to slowness and computed in the initial model v ( x ). The colour scales on the right hand side are for velocity, 
relativ e v elocity per turbation and sensitivity ker nels, respecti vel y. 

 

 

 

 

 

equation almost everywhere as long as ∇T ( x ) is defined (Rouy & Tourin 1992 ). The fast marching method adopts a fast heap sorting method
to locate the minimum traveltime node (e.g. Sethian 1996 ; Rawlinson et al. 2008 ). In contrast, the fast sweeping method uses Gauss–Seidel
iterations with alternating ordering to solve the discretized eikonal equation (e.g. Zhao 2004 ; Qian et al. 2007 ). Following Leung & Qian
( 2006 ) and Tong ( 2021a ), we utilize the fast sweeping method to solve the eikonal eq. ( 1 ) and the adjoint eqs ( 4 ), ( 16 ) and ( 22 ). 

4.1 Velocity estimation 

We e v aluate the velocity estimation performance of the A TT, A TT-CS and A TT-CR methods through a uniform restoration test. The restoration
test involves using a starting velocity model that varies only in the vertical direction (Fig. 2 a) and a 3-D target model. Mathematically, we can
express the starting model v ( x ) and the relative velocity perturbation 	 v ( x )/ v ( x ) of the target model from the starting model as follows: 

v( x ) = v( x , y , z) = min (6 . 0 + 0 . 06 z, 7 . 80) (38) 
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	v( x ) 

v( x ) 
= 

⎧ ⎨ 

⎩ 

0 . 1 sin 
(

7 πx 
240 

)
sin 

(√ 

9 + 8 z −3 
4 π

)
, if sin 

(
7 πx 
240 

)
> 0 or sin 

(√ 

9 + 8 z −3 
4 π

)
> 0 , 

0 , otherwise . 
(39) 

5 seismic stations are located on the surface of the vertical x –z (depth) plane at equal intervals of 10 km (Fig. 2 a). We use traveltime data
rom 100 earthquakes occurring between depths of 1 and 20 km in this vertical plane to recover the relative velocity per turbation. Ear thquake
ocations are assumed to be known for simplicity, and their coordinates are randomly generated (Fig. 2 a). The velocity perturbation is invariant
n the y -direction. For demonstration purposes, only the results in the vertical x –z plane are displa yed. How ever, it should be noted that all of
he ATT methods discussed in this study are inherently capable of solving tomographic problems in 2-D and 3-D. 

First, we examine the performance of the ATT method using first arri v al time data by computing observed traveltimes in the target model
F ig. 2 b). F igs 2 (c)–(e) show examples of indi vidual kernel, e vent k ernel, and misfit k er nel computed in the star ting velocity model (Fig. 2 a).
ver y individual ker nel connects a source and a receiver pair and is perpendicular to the wave front (Fig. 2 c). As indicated by eq. ( 4 ), the sign
f an individual kernel is determined by the traveltime misfit T n ( x ) −

[
T o n ( x ) − τn 

]
at the receiver location x r , m . The sum of all individual

ernels associated with a single earthquake is an event kernel (Fig. 2 d), and the misfit kernel (Fig. 2 e) is the sum of all event kernels. The
isfit kernel can be viewed as an image of the relative velocity perturbation of the target model to the present velocity model. It also suggests
 direction to update the present model. Ho wever , due to spatial smearing, the misfit kernel may provide incorrect information about the model
erturbation at some locations such as ( x = 120 km, z = 9 km). To obtain a reliable result, the model should be iterati vel y improved until the
bjective function becomes stable or quantitatively has less than a few percent reduction (e.g. 10 per cent) compared to its performance in
he first iteration. We use the step-size-controlled gradient descent method (Tong 2021a ), which restricts the relative slowness perturbation
ithin ±2 per cent at each iteration, roughly equivalent to choosing an optimal damping parameter (Liu et al. 2021 ), to update the velocity
odel. After a total of 40 iterations, we successfully recover the velocity structure from the surface to approximately 25 km depth (Fig. 2 f). 

Ne xt, we inv estigate the ef fecti veness of the ATT-CS method. The model parametrization and optimization parameters are the same
s the previous ATT example. In practical applications, dif ferential arri v al times of seismic phases on similar waveforms can be accurately
easured using cross-correlation. Similar waveforms are commonly observed at seismic stations in close proximity. To simulate this scenario,

nly common-source differential arrival times at adjacent stations separated by less than 15 km are used in this test. Figs 3 (c)–(e) display
xamples of individual kernel, event kernel, and misfit kernel of the common-source differential arrival time objective function (eq. 11 )
ith respect to slowness. The individual kernel indicates that common-source differential arrival times are more sensitive to receiver-side

tr uctures. Fur ther more, a direct comparison between the common-source differential arrival time misfit kernel (Fig. 3 e) and the first arri v al
ime misfit kernel (Fig. 2 e) also reveals that common-source dif ferential arri v al times are more sensitive to velocity heterogeneity from the
urface to about 5 km. Fig. 3 (f) shows the result after 40 iterations. We observe that the velocity anomalies above 14 km depth are almost fully
ecovered. In the depth range between 14 and 20 km, the velocity anomalies are only partly recovered, and the performance of the ATT-CS
ethod is inferior to that of the ATT method in imaging structures below 14 km depth. Overall, this test suggests that the ATT-CS method is

n efficient tool for receiver-side velocity structure imaging. 
Thirdly, we use the ATT-CR method to reconstruct the relative velocity perturbation of the target model to the starting model (Fig. 4 b).

he synthetic data only include common-receiver differential arrival times of adjacent earthquakes separated by less than 15 km. Again,
xamples of individual kernel, receiver kernel, and misfit kernel (Figs 4 c–e) are computed in the verticall y v arying starting model (Fig. 4 a).
ere the receiver kernel is defined as the sum of all the individual kernels associated with a common receiver. The individual kernel indicates

hat common-recei ver dif ferential arri v al time measurements are more sensiti v e to source-side v elocity structures, whereas the receiver-side
omplexities may have a limited influence on the final tomographic result (Fig. 4 c). Earthquakes in this test are nearl y uniforml y distributed in
he computational domain from the surface to 20 km depth (Fig. 4 a). As a result, velocity anomalies above 25 km depth can be satisfactorily
ecovered by solely using common-receiver differential arrival times (Fig. 4 f), indicating that the ATT-CR method could be a valuable tool
or subsurface velocity structure imaging. 

Before concluding this section, it is worth discussing how a multiple-grid consisting of several sets of inversion grids is designed to
iscretize the relative slowness model in the restoration test. As stated in eq. ( 39 ), the model of the relativ e v elocity perturbation exhibits
 sinusoidal shape along both the horizontal and vertical directions, with a horizontal wavelength of approximately 68.6 km and a vertical
avelength that increases from 6 km at the surface to around 26 km at 20 km depth. To avoid undersampling, every inversion grid must have

s many grid nodes as possible. Ho wever , the limited resolving ability of the available data requires maintaining a low number of grid nodes.
o strike a balance, we suggest reconstr ucting ever y wavelength anomaly using approximately five grid nodes. In this restoration test, we set

he horizontal spacing of each inversion grid to 16.13 km, with the vertical spacing gradually increasing such that e very w avelength anomal y
s sampled by about five grid nodes (Figs 5 a–e). The spacing of each inversion grid is relati vel y large compared to the forward grid (which
as a spacing of 0.2 km in each direction) on which the eikonal equation and adjoint equations are solved. The positioning of the initial node
ithin an inversion grid is subjective and has the potential to impact the ultimate outcome of the tomographic image, particularly due to the

elati vel y wide spacing between nodes in each inversion grid. To reduce the influence of subjectivity, we use a multiple-grid consisting of five
ets of staggered inversion grids (Fig. 5 f) to reconstruct the velocity anomaly. This approach yields reliable results (Figs 2 f, 3 f and 4 f). 

In practical applications, the sizes (wavelengths) of subsurface velocity anomalies are often unkno wn. Ho wever , we can estimate the
esolving ability of the chosen data by conducting recovery tests, such as checkerboard resolution tests. By increasing or decreasing the sizes
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Figure 3. The same as Fig. 2 but for the ATT-CS method. (c) One individual kernel related to one earthquake and two seismic stations. (d) An example of 
event kernel corresponding to the same earthquake in (c). (e) The misfit kernel of the common-source differential arrival time objective function with respect 
to slowness computed in the initial model in (a). Dif ferential arri v al times are onl y e v aluated at two stations that are separated by less than 15 km. (f) The 
inv erted relativ e v elocity perturbation after 40 iterations. 

 

 

 

 

 

 

 

of anomalies, we can estimate the minimum wavelength that the data can resolve in each direction or around a specific region. Based on the
estimated minimum wa velength, w e can set the spacing of each inversion grid accordingly to avoid undersampling. This approach ensures
that every inversion grid has as many grid nodes as possible while maintaining a low number of nodes, which is necessary due to the limited
resolving ability of the available data. 

4.2 Resolving abilities of differential arrival time data 

The A TT, A TT-CS and A TT-CR methods use different types of arri v al time data, as a result, have varying abilities in resolving subsurface
velocity structures. A thorough understanding of their resolving abilities is essential for selecting appropriate tomography methods in practical 
applications. We conduct additional tests to further examine the resolving ability of each type of arri v al time data. 

The restoration test in Section 4.1 demonstrates that all three methods yield satisfactory results. Ho wever , if the sizes of velocity
anomalies are reduced, we can observe distinct differences in the performance of the three tomography methods. Let us consider a target
model that has smaller-size velocity anomalies (Fig. 6 b). The relative velocity perturbation of the target model from the starting velocity
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Figure 4. The same as Fig. 2 but for the ATT-CR method. (c) One individual kernel related to two earthquakes and one seismic station. (d) An example of 
receiver kernel corresponding to the same seismic station in (c). (e) The misfit kernel of the common-recei ver dif ferential arri v al time objecti ve function with 
respect to slowness computed in the initial model in (a). Differential arrival times are only evaluated for two earthquakes that are separated by less than 15 km. 
(f) The inverted relative velocity perturbation after 40 iterations. 
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	v( x ) 

v( x ) 
= 0 . 06 sin 

(
27 πx 

240 

)
sin 

( √ 

9 + 8 z − 3 

4 
π

) 

, (40) 

here the wavelength of the velocity perturbation along the x -axis is reduced to 17.78 km. For the sake of simplicity, we assume that there
re 47 earthquakes located at a depth of 18 km and are equally spaced at an interval of 5 km (Fig. 6 a). It should be noted that this is
n unrealistic scenario, but it is not difficult to find 47 earthquakes that occurred around 18 km depth in seismolo gicall y acti v e re gions
uch as California. To ensure a fair comparison, all three tomography methods use an identical model parametrization and utilize the same
tep-size-controlled gradient descent algorithm. Additionally, the iterative process for model updating is terminated after 40 iterations for each
ethod, ensuring consistent stopping criteria across all approaches. The resulting images clearly demonstrate that whereas first arri v al time

ata can only partially recover small-size anomalies (Fig. 6 c), common-source differential arrival time data and common-receiver differential
rri v al time data can fully recover small-size anomalies near the receivers (Fig. 6 d) and near the sources (Fig. 6 e), respecti vel y. This suggests
hat differential arrival time data are more effective at imaging smaller-scale structures than first arrival time data. 
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Figure 5. The multiple-grid model parametrization for the restoration test in Section 4.1 . Five sets of regular grids placed in a staggered way are used to 
sample the relativ e v elocity perturbation field. (a)–(e) The spatial distributions of the five regular grids. (f) The multiple-grid formed by the five regular grids. 
For demonstration purposes, only the grid nodes inside the computational domain are shown. For each regular grid, there is one layer of grid nodes beyond 
each edge of the computational domain. 

 

 

 

 

 

 

 

 

 

It is evident that the two differential arrival time tomography methods have their respective limitations and blind zones (Figs 6 d–e). In
this particular example, it is possible to fully recover all the velocity anomalies if the final model generated by one dif ferential arri v al time
tomography method is used as the starting model for the other method. Ho wever , in reality, dif ferential arri v al times are usuall y measured
when two seismic stations or two earthquakes are in close proximity, resulting in limited illumination of some subregions. One approach to
overcome this limitation is to sequentially use the ATT, ATT -CS and ATT -CR methods, where the final model from the previous inversion
is used as the starting model for the ne xt inv ersion. By using this strategy, we can successfully recover all the fine-scale velocity anomalies
from the surface to a depth of approximately 25 km (Fig. 6 g). Again, the iterative process for model updating is terminated after 40 iterations
for each method. An alternative approach is to simultaneously invert all three types of arrival time data, as adopted by Guo et al. ( 2021 )
and Share et al. ( 2021 ) through ray-based seismic tomography. The simultaneous inversion of all three types of data using the adjoint-state
method will be investigated in a separate study. 
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Figure 6. Recovery test of a fine-scale checkerboard structure. (a) The initial vertically varying velocity model with 47 earthquakes located at 18 km depth 
and 25 seismic stations on the surface. (b) The relative velocity perturbation of the target checkerboard model with respect to the initial velocity model. (c)–(e) 
The inv erted relativ e v elocity perturbation models generated by A TT, A TT-CS and A TT-CR, respecti vel y. (f) The inv erted v elocity model by sequentially using 
ATT and ATT-CS. (g) The imaged relative velocity perturbation by ATT-CR with the starting model shown in (f). 
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.3 Earthquake location determination 

irst arri v al times, common-source dif ferential arri v al times, and common-recei ver dif ferential arri v al times contain infor mation on ear thquake
ocations. To e v aluate the performance of the associated earthquake location algorithms, we relocate 160 earthquakes assumed to have occurred
ithin a fault zone in a model where velocity increases with depth (Fig. 7 a). Initially, the maximum location errors of these 160 earthquakes

re 10 km in the direction perpendicular to the fault trace, 2 km along the fault trace, 2.5 km in the depth direction, and 1 s in origin time
Fig. 7 a). 21 seismic stations with an average spacing of 4 km are positioned in a direction perpendicular to the fault trace (Fig. 7 e). There is a
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Figure 7. Relocating earthquakes in an accurate velocity model. The black stars and purple circles represent the initial and (a) true or (b–d) inverted earthquake 
locations. The left panel displays the velocity model in the vertical and fault-perpendicular plane. The white lines denote a fault zone and highlight the strong 
velocity contrast across the fault. The middle panel displays earthquakes in the vertical and fault-parallel plane. Earthquakes in the vertical and origin time 
domain are included in the right panel. Earthquake locations are determined using first arri v al times (b), common-source differential arri v al times (c) and 
common-recei ver dif ferential arri v al times (d), respecti vel y. (e) Inverse triangles represent 21 seismic stations on the surface. 
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aximum deviation of 4 km from this perpendicular direction, meaning that some stations are slightl y of f the exact perpendicular alignment
o the fault trace. We use the arri v al time data computed at these seismic stations to locate ear thquakes. Ever y common-source differential
rri v al time is computed at a station pair separated by less than 15 km, with both source-receiver distances being greater than four times the
istance between the station pair. This ensures that the two first arri v als travel along similar paths. Additionally, for ever y ear thquake pair
eparated by a distance greater than 2 km but less than 15 km, their common-receiver differential arrival times are used, provided that both
ource-receiver distances are greater than four times the distance between the earthquake pair. 

To eliminate the complexity arising from considering other influencing factors, such as velocity inaccuracy, we first determine earthquake
ocations using the true velocity model (Fig. 7 a). As shown in Figs 7 (b)–(f), all three types of data accurately determine the locations of the
60 earthquakes in a precise velocity model. This confirms the ef fecti veness of each earthquake location algorithm. Ho wever , it is worth
oting a slight leftward shift in the earthquake locations derived from common-recei ver dif ferential arri v al times, while their relati ve positions
emain highly accurate (Fig. 7 d). 

The accuracy of the velocity model plays a critical role in earthquake location determination. To examine the influence, we determine
he locations of the 160 earthquakes in a simple linearly increasing velocity model (Fig. 8 a). It is evident that the inaccuracy of the velocity
odel introduces systematic errors to earthquake locations (deviations from the fault zone) when utilizing first arri v al times (Fig. 8 b). The

esults derived from common-source differential arrival times appear to be even less accurate (Fig. 8 c), providing an incorrect representation
f the actual earthquake distributions. Ho wever , common-receiver differential arrival times have much better performance within such an
naccurate velocity model. This may suggest that common-receiver differential arrival times are less sensitive to velocity errors and offer
upplementary constraints on earthquake locations. 

.4 Simultaneous determination of velocity and earthquake locations 

hen both earthquake locations and velocity structure are not accurately known, it becomes essential to determine them simultaneously. We
ontinue to consider a model with a strong velocity contrast across a fault, along with 160 earthquakes situated within the fault zone. The true
odel is slightly different from the one depicted in Fig. 7 (a), as it incorporates a small-size high-velocity anomaly in the broad low-velocity

lock on the right-hand side (Fig. 9 a). To increase subsurface illumination, we include another 200 randomly distributed earthquakes (Fig. 9 a).
he initial positions for the 360 earthquakes are determined using the eikonal equation-based grid search method (Appendix B ). This method

s capable of finding a globally optimal solution. Ho wever , conducting the grid search within the initial velocity model may introduce errors
nto the earthquake locations due to the inaccuracies of the initial model, and make it difficult to escape the local minimum during the
ubsequent joint inversion of velocity and earthquake locations. To mitigate this, we conduct the grid search in a different velocity model that
atches the target model’s velocity at the surface and linearly increases to 7.95 km s −1 at a depth of 30 km (Fig. 9 b). 

We use a sequential combination of the ATT, ATT-CS and ATT-CR methods to reconstruct the subsurface velocity structure and determine
arthquake locations. The initial velocity model for ATT is a simple vertically increasing velocity model, as illustrated in Fig. 8 (a). In all
hree tomography methods, we utilize a multiple-grid inv ersion grid, which consists of fiv e sets of re gular grids with a uniform horizontal
pacing of approximately 3 km, allowing it to capture the small-size high-velocity zone, while accommodating the presence of the large-scale
igh-velocity anomaly on the left and the general low-velocity body on the right. The criteria for choosing common-source differential
rri v al times and common-receiver differential arrival times remain consistent with those used in the preceding earthquake location example.
dditionally, random errors (with mean 0 s and standard deviation 0.1 s for first arrival times and with mean 0 s and standard deviation
.05 s for differential arrival times) are introduced to the synthetic data to simulate measurement errors in real-world practice. The earthquake
ocations and velocity structure are updated iterati vel y until the objective function values show no significant reduction. 

The ATT method successfully captures and reconstructs the large-scale high-velocity anomaly on the left and the low-velocity anomaly
n the right. It also accurately identifies the sharp velocity contrast above 15 km depth (Fig. 9 c). The accuracies of earthquake locations
ave been slightly improved, particularly visible for earthquakes inside the small-size high-velocity anomal y. Howe ver, the recovery of the
mall-size high-velocity body is only partial. The utilization of common-source differential arrival times enhances the accuracy of near-surface
tructures (Fig. 9 d). Specifically, the sharp velocity contrast across the fault aligns more closely with the true model when compared to the
esult of ATT. It is also observable that the accuracies of earthquake locations in the fault-parallel direction have been improved. The use of
ommon-recei ver dif ferential arri v al times generall y improves the accuracies of earthquake locations (Fig. 9 e), underscoring the sensiti vity
f common-receiver differential arrival times to earthquake parameters (hypocentre and origin time). Importantly, the tomographic results
efined first by ATT-CS and then by ATT-CR highlight the presence of a small-size high-velocity anomaly in the large-scale low-velocity
ody. This underlines the advantage of involving differential arrival times in tomographic inversions. 

.5 Multipathing 

he adjoint eqs ( 4 ), ( 16 ) and ( 22 ) describe how traveltime misfits or differential traveltime misfits observed at all the receivers are back-
rojected to the source location. The direction of the back-projection is given by the ne gativ e trav eltime gradient −∇T ( x ). In a local sense,
his gradient is parallel to the tangent of the fastest path between the source and a receiver. Therefore, the adjoint eqs ( 4 ), ( 16 ) and ( 22 )
ransport traveltime misfits or differential traveltime misfits along the fastest paths (seismic rays) backwards to the source location. Ho wever ,
ven in some mildly heterogeneous media, there may exist multiple fastest paths between a source and a receiver. This phenomenon, known as
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Figure 8. The same as Fig. 7 but earthquake locations are determined in an inaccurate velocity model shown in (a). 

 

 

 

 

 

multipathing, occurs at singular points where ∇T ( x ) is not continuous, resulting in multiple distinct directions of ∇T ( x ) in the neighbourhood
of each singular point. Ray tracing along the ne gativ e direction of ∇T ( x ) may become unstable through these singular points and typically can
only identify one fastest path. In contrast, our approach e v aluates ∇T ( x ) at every point in the computational domain, enabling us to identify
all the distinct directions in the neighbourhood of a singular point. Consequently, when there are multiple fastest paths between a source and
a receiver, solving the adjoint equations directly (without using any ray tracing techniques) allows for the projection of traveltime misfits or
differential traveltime misfits onto all possible paths. 
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Figure 9. Simultaneous determination of velocity structure and earthquake locations. All the velocity models are presented in terms of relative velocity 
perturbation compared to the initial model (Fig. 8 a). (a) Earthquakes at their true locations and the target velocity model. The white ellipse outlines a high- 
velocity anomaly embedded in the general low-velocity block on the right. (b) Black stars represent earthquakes at their initial locations. The initial earthquake 
locations are determined using the eikonal equation-based grid search method (see Appendix B ) within a velocity model that matches the target model’s 
velocity at the surface and linearly increases to 7.95 km s −1 at a depth of 30 km. (c) Inversion results using first arri v al times. (d) Subsequent refinement of 
the velocity model and earthquake locations using common-source dif ferential arri v al times, building upon the outcome of ATT. (e) Further updated velocity 
model and earthquake locations by common-receiver differential arrival times, building upon the outcome of ATT and ATT-CS. All the others are the same as 
Fig. 7 . 

art/ggad416_f9.eps


18 P. Tong et al . 

Figure 10. (a) A vertically varying velocity model in a cross-borehole setting. The stars in the left well are seven sources, and the inverted triangles in the 
right well denote five receivers. (b)–(d) Zoom-in views of receivers 3–5, sources 2–4 and sources 5–7, respecti vel y. (e)–(g) Indi vidual kernels from source 1 
to receiver 3, 4 and 5, respecti vel y. (h)–(j) Indi vidual kernels from sources 2, 3, 4 to receiver 2, respecti vel y. (k)–(m) Indi vidual kernels from sources 5, 6, 
7 to recei ver 1, respecti vel y. All the individual kernels are computed in the velocity model of (a) by assuming 1 s traveltime misfit at the respective receiver 
locations with the ATT method. The colour scale for the individual kernels is placed at the bottom. 

 

 

 

 

Figs 10 (a)–(d) depict a cross-borehole setting with seven sources located in one well and fiv e receiv ers placed in the other well. The
reference velocity model between the two wells only varies in the vertical direction. Individual traveltime sensitivity kernels are computed
by assuming 1 s traveltime misfit at the respective receiver locations (Figs 10 e–m). Multipathing phenomena can be observed between some
sources and receivers (Figs 10 f, i and l). As discussed earlier, traveltime misfits are projected along the multipathing routes. In general,
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ultipathing indicates the complexity of seismic wave propagation and difficulty of reliable seismic imaging in heterogeneous media. To
enerate reliable velocity models for geolo gicall y comple x re gions, advanced inv ersion techniques such as the adjoint-state tomography
ethods developed in this study are necessary. 

 C O N C LU S I O N S  

e have successfully developed two adjoint-state differential arrival time tomography methods by extending the ATT method to invert
ommon-source dif ferential arri v al times and common-recei ver dif ferential arri v al times. The onl y dif ference among these tomo graphy
ethods is the source term of the adjoint equation, which characterizes the observational misfits at receiver locations. The three methods,

amely the ATT, ATT-CS and ATT-CR methods, use the same multiple-grid model parametrization, which is needed when updating the
elocity model, and the same optimization algorithm to iterati vel y update velocity models and/or earthquake locations. Synthetic tests have
erified the validity of these three tomography methods, indicating their readiness for real data inversions. The main features that distinguish
 TT, A TT-CS and A TT-CS from other ra y-based tra veltime tomography approaches, including Thurber ( 1983 ), Waldhauser & Ellsworth

 2000 ), Zhang & Thurber ( 2003 ), Guo & Zhang ( 2017 ) and Guo et al. ( 2021 ), can be summarized in three aspects: 

(1) Ray tracing independence: ATT, ATT-CS and ATT-CS do not rely on traditional ray tracing methods. 
(2) Ef ficient sensiti vity kernel computation: These methods use the efficient adjoint-state technique to calculate sensitivity kernels of the

bjective function with respect to model parameters. 
(3) Incorporation of multiple-grid model parametrization. 

It is also worth noting that the ATT method has already been extended to image both velocity heterogeneity and azimuthal anisotropy
y using a more sophisticated elliptical eikonal equation to model first-arrival traveltime fields (Tong 2021b ; Chen et al. 2023 ). 

Common-source differential arrival times are primarily sensitive to receiver-side velocity structures. On the other hand, common-
ecei ver dif ferential arri v al times provide additional constraints on source-side velocity structures. Both adjoint-state dif ferential arri v al time
omography methods demonstrate improved capability in recovering small-scale velocity structures compared to first-arri v al tomo graphy.

hen both earthquake locations and velocity structure are not accurately known, it becomes crucial to determine them simultaneously.
umerical examples further support the sensitivity of common-receiver differential arrival times to earthquake locations, a characteristic that
as already been used by the double-difference earthquake location method proposed by Waldhauser & Ellsworth ( 2000 ). To fully utilize all
hree types of arri v al time data, it is recommended to perform a joint or sequential inversion of first arri v al times, common-source differential
rri v al times, and common-receiver differential arrival times, in order to obtain reliable subsurface velocity models and earthquake locations,
s has been done by Guo et al. ( 2021 ) and Share et al. ( 2021 ) using ray-based seismic tomography. 

The present study has shown that the three seismic tomography methods, A TT, A TT-CS and A TT-CR, have the ability to accurately
dentify subsurface influence zones on arri v al time misfits or differential arri v al time misfits at receiver locations, even in the presence of
ultipathing, b y numericall y solving the adjoint equations with the fast sweeping method. We conclude that the ATT method using first arri v al

imes and the two adjoint-state differential arrival time tomography methods are promising techniques that have the potential to become
tandard tools in future seismic tomographic inversion studies. 
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A P P E N D I X  A :  S E C O N D - O R D E R  D I F F E R E N T I A L  A R R I VA L  T I M E  T O M O G R A P H Y  

A second-order dif ferential arri v al time measures the dif ference between two common-source dif ferential arri v al times corresponding to two
earthquakes ( x s , n , x s , j ) and the same pair of seismic stations ( x r , m , x r , k ), that is the difference between T o n ( x r,m 

) − T o n ( x r,k ) and T o j ( x r,m 

) −
T o j ( x r,k ) . It is equi v alent to the dif ference between two common-recei ver dif ferential arri v al times corresponding to two seismic stations
and the same pair of earthquakes, that is the difference between 

[
T o n ( x r,m 

) − τn 

] − [
T o j ( x r,m 

) − τ j 

]
and 

[
T o n ( x r,k ) − τn 

] − [
T o j ( x r,k ) − τ j 

]
. 

Accordingly, the objective function of second-order differential arrival time tomography can be defined as 

χ ( s( x ) , x s, 1 , τ1 , · · · , x s,n , τn , · · · , x s,N , τN ) = 
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here 

t m, k 
n, j = 

{[
T n ( x r,m 

) − T n ( x r,k ) 
] − [

T j ( x r,m 

) − T j ( x r,k ) 
]}

− {[
T o n ( x r,m 

) − T o n ( x r,k ) 
] − [

T o j ( x r,m 

) − T o j ( x r,k ) 
]}

, (A2) 

nd ω 

m, k 
n, j is the weight associated with the second-order differential arrival time. 

The variation of the objective function due to an infinitesimal perturbation δs ( x ) in the slowness model s ( x ) can be expressed by 

χ = 

M ∑ 

m = 1 

M ∑ 

k= 1 

N ∑ 

n = 1 

N ∑ 

j= 1 
4 ω 

m, k 
n, j 	t m, k 

n, j 

∫ 
�

δT n ( x ) δ( x − x r,m 

)dx , (A3) 

here δT n ( x ) represents the perturbation in the traveltime field. Similar to the discussion in Sections 3.1 and 3.2 , introducing a test function
 n ( x ) that satisfies the boundary value problem (adjoint equation), { ∇ · [ P n ( x ) ∇ 

( −T n ( x ) ) ] = 

∑ M 

m = 1 
∑ M 

k= 1 
∑ N 

j= 1 4 ω 

m, k 
n, j 	t m, k 

n, j δ( x − x r,m 

) , x ∈ �

P n ( x ) = 0 , x ∈ ∂�, 
(A4) 

e can establish the relationship between δχ and the causing factor δs ( x )/ s ( x ) as 

χ = 

N ∑ 

n = 1 

∫ 
�

P n ( x ) s( x ) δs( x )dx = 

∫ 
�

K s ( x ) 
δs( x ) 

s( x ) 
dx , (A5) 

here the misfit kernel is 

K s ( x ) = 

N ∑ 

n = 1 
K s,n ( x ) = 

N ∑ 

n = 1 
P n ( x ) s 

2 ( x ) . (A6) 

To locate earthquakes, we examine the variation of the objective function due to an infinitesimal perturbation ( δx s,n , δτn ) in the earthquake
ocation ( x s,n , τn ) , 

χ = 

M ∑ 

m = 1 

M ∑ 

k= 1 

N ∑ 

n = 1 

N ∑ 

j= 1 
ω 

m, k 
n, j 	t m, k 

n, j 

{[
δT n ( x r,m 

) − δT n ( x r,k ) 
] − [

δT j ( x r,m 

) − δT j ( x r,k ) 
]}

= 

M ∑ 

m = 1 

M ∑ 

k= 1 

N ∑ 

n = 1 

N ∑ 

j= 1 
4 ω 

m, k 
n, j 	t m, k 

n, j δT n ( x r,m 

) . (A7) 

e assume that � m ( x ) is the traveltime field initiated at the receiver location x r , m . Based on the reciprocity principle (Aki & Richards 2002 ),
 e ha ve δT n ( x r , m ) = ∇� m ( x s , n ) · δx s , n . Therefore, the full deri v ati ve of the objecti ve function (eq. A1 ) is 

δχ ( s( x ) , x s, 1 , τ1 , · · · , x s,n , τn , · · · , x s,N , τN ) 

= 

∫ 
�

K s ( x ) 
δs( x ) 

s( x ) 
dx + 

N ∑ 

n = 1 

M ∑ 

m = 1 

M ∑ 

k= 1 

N ∑ 

j= 1 
4 ω 

m, k 
n, j 	t m, k 

n, j ∇� m 

( x s,n ) · δx s,n , (A8) 

here K s ( x ) is given by eq. ( A6 ). The subsequent steps are similar to those discussed in the ATT, ATT-CS and ATT-CR methods. 

P P E N D I X  B :  E I KO NA L  E Q U  A  T I O N - B A S E D  G R I D  S E A RC H  F O R  E A RT H Q UA K E  

O C AT I O N  

rid search is a popular earthquake location algorithm known for its simplicity and capacity to determine globally optimal hypocentre
arameters (Sambridge & Kennett 1986 ). Here, we present an eikonal equation-based earthquake location method, which follows a grid-
earch approach for earthquake localization. A set of N earthquakes is denoted as ( x s , n , τ n ) ( n = 1, 2, ···, N ), and M seismic stations as x r , m
 m = 1, 2, ···, M ). T n ( x ) represents the traveltime field generated by the n th earthquake. To accurately relocate the n th earthquake ( x s , n , τ n ),
e define a misfit function that uses the first arri v al times T o n ( x r,m 

) from this earthquake to all seismic stations, 

G 

( x , τ ) = 

M ∑ 

m = 1 

ω n, m 

2 

{
� m 

( x ) − [
T o n ( x r,m 

) − τ
]}2 

, (B1) 

here � m ( x ) represents the traveltime field initiated at the m th receiver. Following the reciprocity principle assumption (Aki & Richards
002 ), � m ( x s,n ) = T n ( x r , m ), and thus, the minimizer of G ( x , τ ) can be regarded as the actual location of the n th earthquake ( x s , n , τ n ). 
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At any local minimum ( x ∗,, τ ∗), the derivative of G ( x , τ ) with respect to τ is zero. Therefore, by equating ∂ G ( x , τ )/ ∂ τ to zero, we obtain
a general function for τ , 

τ ( x ) = 

∑ M 

m = 1 ω n,m 

[
T o n ( x r,m 

) − � m 

( x ) 
]

∑ M 

m = 1 ω n,m 

. (B2) 

Substituting τ ( x ) into eq. ( B1 ), we arrive at a function dependent solely on x , 

F ( x ) = G 

( x , τ ( x ) ) = 

M ∑ 

m = 1 

ω n, m 

2 

{
� m 

( x ) − [
T o n ( x r,m 

) − τ ( x ) 
]}2 

, (B3) 

For a given grid with L nodes, M eikonal equations are solved to obtain � m ( x ) at every node, and hence the value of F ( x ). If F ( x ) reaches its
minimum at the grid node x ∗, then x ∗ is considered the earthquake location, along with the origin time τ ( x ∗). 
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