
1.  Introduction
Teleseismic traveltime tomography, which inverts differential arrival times of distant earthquakes, is a valuable 
tool for illuminating mantle structures beneath seismic arrays (Aki et al., 1977; Rawlinson et al., 2006; D. Zhao 
et al., 1994). Compared with local earthquake tomography, teleseismic traveltime tomography does not rely on 
local seismicity, broadening the scope of imaging to aseismic areas (Rawlinson & Fishwick, 2012). In addition, 
teleseismic waves travel through deep regions and crisscross beneath the seismic array, enabling the illumination 
of mantle structures (Liu et  al.,  2021; Yao et  al.,  2021). These advantages facilitate the wide applications of 
teleseismic traveltime tomography, which have contributed significantly to our understanding of the mantle struc-
tures and related dynamic processes (Aki et al., 1977; Benz et al., 1992; Bianchi et al., 2013; Lei & Zhao, 2016; 
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Liu et  al.,  2018; Oncescu et  al.,  1984; Rawlinson & Fishwick, 2012; Rawlinson & Kennett, 2008; Saltzer & 
Humphreys, 1997; Yao et al., 2021; D. Zhao et al., 1994).

A fundamental assumption in teleseismic traveltime tomography is that uncertainties in hypocentral parameters 
and structural heterogeneities outside the study region have negligible impacts on imaging receiver-side struc-
tures (Aki et al., 1977; Liu et al., 2018; Rawlinson et al., 2006; Steck et al., 1998). This is because generally 
common-source differential arrival times are used, and the wave paths from the source to adjacent receivers 
nearly overlap outside the study region (D. Zhao et al., 2013). This assumption allows for simulating wavefront 
propagation to be confined within the local domain. The wavefront propagation from the source to the boundary 
of the study region is usually computed approximately in an efficient manner, for example, based on the plane 
wave assumption (Aki et al., 1977; Steck & Prothero, 1991) or a global spherically symmetric reference model 
(Lei & Zhao, 2016; Rawlinson et al., 2006; D. Zhao et al., 1994). Initially, teleseismic traveltime tomography 
was conducted by tracing ray paths using fast but approximated approaches to predict traveltimes and compute 
sensitivity kernels (Aki et al., 1977; Steck et al., 1998; Weiland et al., 1995). More recently, the traveltime field 
of the first arrival can be accurately computed by solving Eikonal equations in complex media (Liu et al., 2018; 
Rawlinson et al., 2006, 2008), and accurate ray paths can be determined by tracing backward from the receivers 
to the local boundary along the negative gradient direction of the traveltime field. In addition to the traveltimes of 
first arrivals, waveform information can be extensively used in waveform-based teleseismic tomography (Beller 
et al., 2018; Monteiller et al., 2015; Wang et al., 2022), which improves the illumination of near-surface struc-
tures. However, this approach requires much more computational resources for wave propagation simulation.

We demonstrate that the computation of ray paths is avoidable in teleseismic traveltime tomography. We propose 
a novel framework for teleseismic traveltime tomography based on the adjoint-state method. Specifically, the 
tomographic inverse problem is formulated as an Eikonal equation-constrained optimization problem that mini-
mizes the discrepancy between observational and predicted differential arrival times. The Fréchet derivative of 
the objective function with respect to the model parameter is computed by solving an adjoint equation instead of 
relying on ray paths. The independence of computing ray paths not only avoids the potential failures of conven-
tional shooting and bending methods for ray tracing (Hole & Zelt, 1995; Rawlinson et al., 2008; Vidale, 1988) but 
also makes the computational cost nearly independent of the number of receivers. After that, model parameters 
are updated in an iterative fashion, in which the multi-grid model parameterization (Tong et al., 2019) and the 
step size-controlled gradient descent method (Tong, 2021a) are applied. Our new method is a significant exten-
sion of the adjoint-state traveltime tomography method (Tong, 2021a; Tong et al., 2024) to teleseismic traveltime 
tomography, which is then benchmarked in Thailand and adjacent regions using the new seismic data recorded 
by the Thai Seismic Array (TSAR) (S. Tanaka et al., 2019).

The paper is organized as follows. Section 2 develops the adjoint-state teleseismic traveltime tomography method. 
Its real-data application and benchmark in Thailand and adjacent regions are introduced in Section 3. Imaging 
results are presented in Section 4, followed by geological interpretation in Section 5. Finally, we conclude this 
paper in Section 6.

2.  Adjoint-State Teleseismic Traveltime Tomography
2.1.  Prediction of Teleseismic Traveltimes

We predict the traveltime field T(x) from the source xs outside the study region to any position x within the 
study region Ω in two steps. Here x = (r, θ, ϕ) denotes a position inside the Earth's volume, where r is the radius 
measuring the distance to the Earth's center, θ represents the latitude, and ϕ is the longitude. xs = (rs, θs, ϕs) is 
the source location.

First, we compute the traveltime from the source to the boundary (north, south, east, west, and bottom surfaces) 
of the study region. Under the assumption that heterogeneity outside the study region has a negligible impact on 
the imaging of receiver-side structures when inverting common-source differential arrival times (Aki et al., 1977; 
Liu et al., 2018; Rawlinson et al., 2006; Steck et al., 1998), we simply simulate the wavefront propagation from 
the source to the boundary of the study region in a spherically symmetric global reference model such as the 
AK135 model (Kennett et al., 1995). Due to the spherical symmetry, the traveltime t(x; xs) from the source xs to 
any point x on the boundary Γ ⊂ ∂Ω depends on the radii at the two locations, that is, r and rs, and the epicenter 
distance Ψ, expressed by
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𝑡𝑡(𝒙𝒙;𝒙𝒙𝑠𝑠) = 𝜏𝜏(𝑟𝑟𝑟Ψ(𝜃𝜃𝜃 𝜃𝜃; 𝜃𝜃𝑠𝑠,𝜙𝜙 𝑠𝑠); 𝑟𝑟𝑠𝑠),� (1)

where the epicenter distance Ψ has an analytic expression of

Ψ(�, �; ��, ��) = arccos(sin � sin �� + cos � cos �� cos(� − ��)) + �(�, �; ��, ��).� (2)

Here ϵ(θ, ϕ; θs, ϕs) is a correction term for the Earth's ellipticity. The traveltime field τ(r, ψ; rs) can be described 
by a 2D Eikonal equation in spherical coordinates

⎧

⎪

⎨

⎪

⎩

‖

‖

‖

∇�(�, � ; ��)‖‖
‖

2
= �21�(�), (�, �) ∈ (0, �] × [0, 2�),

�(��, 0; ��) = 0,
� (3)

where 𝐴𝐴 ∇𝜏𝜏 =

(

𝜕𝜕𝑟𝑟𝜏𝜏𝜏
1

𝑟𝑟
𝜕𝜕𝜓𝜓𝜏𝜏

)

 , and s1D(r) is the slowness (reciprocal of velocity) at radius r. Figures 1a and 1b illus-
trate an example of the 2D traveltime field τ(r, ψ; rs) and the traveltime t(x; xs) from the source to the boundary 
Γ of a 3D region.

Second, we compute the traveltime field T(x) in the local volume Ω (Figure 1c), which satisfies a 3D Eikonal 
equation with given boundary conditions

⎧

⎪

⎨

⎪

⎩

‖

‖

‖

∇� (�)‖‖
‖

2
= �2(�), � ∈ Ω,

� (�) = �(�;��), � ∈ Γ ⊂ �Ω.
� (4)

Here ∇� =
(

��� , 1
�
��� , 1

� cos �
���

)

 , and s(x) represents the 3D slowness of the study region.

According to the above discussion, we can predict the traveltimes from a teleseismic event to any positions in the 
study region by solving a 2D and a 3D Eikonal equation. In this study, we employ the grid-based fast sweeping 
method to solve the Eikonal equations (Fomel et al., 2009; Luo & Qian, 2012; Tsai et al., 2003; H. Zhao, 2005). 
It is worth noting that the 2D Eikonal equation only needs to be solved once for each distant source to acquire 
the traveltimes to the local boundary, as the velocity model outside the study region remains unchanged during 
the inversion. In addition, solving the 2D Eikonal equation also enables us to consider structural heterogeneity 
outside of the 3D study region when computing the traveltime from the source to the local boundary, by replacing 
the 1D slowness model s1D(r) with a 2D slowness model s2D(r, ψ) in Equation 3.

2.2.  The Fréchet Derivative

The main objective of teleseismic traveltime tomography is to determine an optimal slowness model s(x) 
that minimizes the discrepancy between predicted and observational differential arrival times. A differential 

Figure 1.  Illustration of teleseismic traveltime prediction. (a) The 2D traveltime field originating from the earthquake (blue star), which is obtained by solving the 2D 
Eikonal equation in the AK135 model (Kennett et al., 1995). White lines are traveltime isochrones at an interval of 50 s. (b) The traveltime field projected onto the 
north, south, east, west, and bottom surfaces of the study region based on the 2D traveltime field shown in panel (a). (c) The traveltime field in the 3D study region, 
which is obtained by solving the 3D Eikonal equation with the boundary conditions shown in panel (b).
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arrival time (also called differential traveltime) is the difference between the traveltimes of two waves orig-
inating from the same earthquake but recorded by two separate stations, which can be accurately measured 
either manually or using a cross-correlation approach (Liu et al., 2019; Pan et al., 2022; Tong et al., 2024). 
We formulate teleseismic traveltime tomography as an Eikonal equation-constrained optimization problem, 
given by

min
𝑠𝑠(𝒙𝒙),𝑻̂𝑻

𝜒𝜒
(

𝑠𝑠(𝒙𝒙), 𝑻̂𝑻
)

≜

𝑁𝑁𝑠𝑠
∑

𝑛𝑛=1

𝑁𝑁𝑟𝑟
∑

𝑖𝑖=1

𝑁𝑁𝑟𝑟
∑

𝑗𝑗=1

𝑤𝑤𝑛𝑛𝑛𝑛𝑛𝑛𝑛

2

(

Δ𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛𝑛 − Δ𝑇𝑇 𝑜𝑜
𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑇̂𝑇𝑖𝑖 − 𝑇̂𝑇𝑗𝑗

)2
,� (5)

subject to Δ𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑇𝑇𝑛𝑛(𝒙𝒙𝑟𝑟𝑟𝑟𝑟) − 𝑇𝑇𝑛𝑛(𝒙𝒙𝑟𝑟𝑟𝑟𝑟),� (6)

⎧

⎪

⎨

⎪

⎩

‖

‖

‖

∇��(�)‖‖
‖

2
= �2(�), � ∈ Ω,

��(�) = ��(�), � ∈ Γ ⊂ �Ω,
� (7)

𝑡𝑡𝑛𝑛(𝒙𝒙) = 𝜏𝜏𝑛𝑛(𝑟𝑟𝑟Ψ(𝜃𝜃𝜃 𝜃𝜃; 𝜃𝜃𝑠𝑠𝑠𝑠𝑠,𝜙𝜙 𝑠𝑠𝑠𝑠𝑠)),� (8)

⎧

⎪

⎨

⎪

⎩

‖

‖

‖

∇��(�, �)‖‖
‖

2
= �21�(�), (�, �) ∈ (0, �] × (0, 2�],

��(��,�, 0) = 0.
� (9)

Here ΔTn,ij = Tn(xr,i) − Tn(xr,j) is the predicted differential traveltime, in which Tn(xr,i) is the predicted traveltime of 
a wave originating from the n-th earthquake at 𝐴𝐴 𝒙𝒙𝑠𝑠𝑠𝑠𝑠 = (𝑟𝑟𝑠𝑠𝑠𝑠𝑠 , 𝐴𝐴 𝐴𝐴𝑠𝑠𝑠𝑠𝑠, 𝜙𝜙𝑠𝑠𝑠𝑠𝑠),𝑛𝑛  = 1, . . . , 𝑁𝑁𝑠𝑠 , and recorded by the i-th seis-
mic station at 𝐴𝐴 𝒙𝒙𝑟𝑟𝑟𝑟𝑟 = (𝑟𝑟𝑟𝑟𝑟𝑟𝑟 , 𝐴𝐴 𝐴𝐴𝑟𝑟𝑟𝑟𝑟, 𝜙𝜙𝑟𝑟𝑟𝑟𝑟),𝑖𝑖  = 1, . . . , 𝑁𝑁𝑟𝑟 . Similarly, 𝐴𝐴 Δ𝑇𝑇 𝑜𝑜

𝑛𝑛𝑛𝑛𝑛𝑛𝑛
 denotes the observational differential traveltime, 

which can be extracted from the waveform data using the multi-channel cross-correlation (MCCC) technique 
(VanDecar & Crosson, 1990). The weight coefficient wn,ij reflects the existence and reliability of the differential 
traveltime data. We introduce additional unknowns 𝐴𝐴 𝑻̂𝑻 =

(

𝑇̂𝑇1, . . . , 𝑇̂𝑇𝑁𝑁𝑟𝑟

)

 as the traveltime corrections associated 
with seismic stations (Frederiksen et al., 1998; Graeber et al., 2002). These station correction terms can absorb 
the traveltime residual contributed by the unresolvable shallow heterogeneities (Rawlinson et al., 2006).

We derive the Fréchet derivative of the objective function with respect to slowness s(x) based on the adjoint-state 
method. For the sake of notation simplicity, we omit the dependence on x in the following derivation. A small 
model perturbation δs(x) causes a small perturbation of the traveltime field δTn(x), satisfying

⎧

⎪

⎨

⎪

⎩

‖

‖

‖

∇��
‖

‖

‖

2
+ ‖

‖

‖

∇���
‖

‖

‖

2
+ 2∇�� ⋅ ∇��� = (� + ��)2, � ∈ Ω,

��(�) + ���(�) = ��(�), � ∈ Γ ⊂ �Ω.
� (10)

Subtracting Equation 7 from Equation 10 and ignoring second and higher-order terms yield

⎧

⎪

⎨

⎪

⎩

∇𝑇𝑇𝑛𝑛 ⋅ ∇𝛿𝛿𝛿𝛿𝑛𝑛 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝒙𝒙 ∈ Ω,

𝛿𝛿𝛿𝛿𝑛𝑛(𝒙𝒙) = 0, 𝒙𝒙 ∈ Γ ⊂ 𝜕𝜕Ω.
� (11)

We multiply a test function Pn(x) on both sides of Equation 11 and integrate over the volume Ω

∫
Ω

𝑃𝑃𝑛𝑛∇𝑇𝑇𝑛𝑛 ⋅ ∇𝛿𝛿𝛿𝛿𝑛𝑛d𝒙𝒙 =
∫
Ω

𝑃𝑃𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠d𝒙𝒙.� (12)

Using integration by parts and the Gauss theorem, we have

∫
𝜕𝜕Ω

𝒏𝒏 ⋅ (𝑃𝑃𝑛𝑛∇𝑇𝑇𝑛𝑛 ⋅ 𝛿𝛿𝛿𝛿𝑛𝑛)d𝜎𝜎 +
∫
Ω

𝛿𝛿𝛿𝛿𝑛𝑛∇ ⋅ (𝑃𝑃𝑛𝑛(−∇𝑇𝑇𝑛𝑛))d𝒙𝒙 =
∫
Ω

𝑃𝑃𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠d𝒙𝒙,� (13)

where n is the outer unit normal of ∂Ω. If Pn(x) satisfies the adjoint equation
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⎧

⎪

⎨

⎪

⎩

∇ ⋅ (𝑃𝑃𝑛𝑛(−∇𝑇𝑇𝑛𝑛)) = 2
𝑁𝑁𝑟𝑟
∑

𝑖𝑖=1

(

𝑁𝑁𝑟𝑟
∑

𝑗𝑗=1

𝑤𝑤𝑛𝑛𝑛𝑛𝑛𝑛𝑛

(

Δ𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛𝑛 − Δ𝑇𝑇 𝑜𝑜
𝑛𝑛𝑛𝑛𝑛𝑛𝑛

+ 𝑇̂𝑇 𝑖𝑖 − 𝑇̂𝑇 𝑗𝑗

)

)

𝛿𝛿(𝒙𝒙 − 𝒙𝒙𝑟𝑟𝑟𝑟𝑟), 𝒙𝒙 ∈ Ω,

𝑃𝑃𝑛𝑛(𝒙𝒙) = 0, 𝒙𝒙 ∈ 𝜕𝜕Ω∖Γ,

� (14)

then a linear relationship between the slowness perturbation δs(x) and the perturbation of the objective function 
δχ can be established by ignoring second and higher-order terms,

𝛿𝛿𝛿𝛿 =

𝑁𝑁𝑠𝑠
∑

𝑛𝑛=1

𝑁𝑁𝑟𝑟
∑

𝑖𝑖=1

𝑁𝑁𝑟𝑟
∑

𝑗𝑗=1

𝑤𝑤𝑛𝑛𝑛𝑛𝑛𝑛𝑛

(

Δ𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛𝑛 − Δ𝑇𝑇 𝑜𝑜
𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑇̂𝑇𝑖𝑖 − 𝑇̂𝑇𝑗𝑗

)

(𝛿𝛿𝛿𝛿𝑛𝑛(𝒙𝒙𝑟𝑟𝑟𝑟𝑟) − 𝛿𝛿𝛿𝛿𝑛𝑛(𝒙𝒙𝑟𝑟𝑟𝑟𝑟))

=

𝑁𝑁𝑠𝑠
∑

𝑛𝑛=1
∫
Ω

𝑁𝑁𝑟𝑟
∑

𝑖𝑖=1

𝑁𝑁𝑟𝑟
∑

𝑗𝑗=1

𝑤𝑤𝑛𝑛𝑛𝑛𝑛𝑛𝑛

(

Δ𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛𝑛 − Δ𝑇𝑇 𝑜𝑜
𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑇̂𝑇𝑖𝑖 − 𝑇̂𝑇𝑗𝑗

)

𝛿𝛿𝛿𝛿𝑛𝑛(𝒙𝒙)(𝛿𝛿(𝒙𝒙 − 𝒙𝒙𝑟𝑟𝑟𝑟𝑟) − 𝛿𝛿(𝒙𝒙 − 𝒙𝒙𝑟𝑟𝑟𝑟𝑟))d𝒙𝒙

=

𝑁𝑁𝑠𝑠
∑

𝑛𝑛=1
∫
Ω

𝛿𝛿𝛿𝛿𝑛𝑛(𝒙𝒙)2

𝑁𝑁𝑟𝑟
∑

𝑖𝑖=1

(

𝑁𝑁𝑟𝑟
∑

𝑗𝑗=1

𝑤𝑤𝑛𝑛𝑛𝑛𝑛𝑛𝑛

(

Δ𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛𝑛 − Δ𝑇𝑇 𝑜𝑜
𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑇̂𝑇𝑖𝑖 − 𝑇̂𝑇𝑗𝑗

)

)

𝛿𝛿(𝒙𝒙 − 𝒙𝒙𝑟𝑟𝑟𝑟𝑟)d𝒙𝒙

=

𝑁𝑁𝑠𝑠
∑

𝑛𝑛=1
∫
Ω

𝛿𝛿𝛿𝛿𝑛𝑛∇ ⋅ (𝑃𝑃𝑛𝑛(−∇𝑇𝑇𝑛𝑛))d𝒙𝒙 =

𝑁𝑁𝑠𝑠
∑

𝑛𝑛=1
∫
Ω

𝑃𝑃𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠d𝒙𝒙.

� (15)

The above equation derives the Fréchet derivative of the objective function with respect to slowness, which is 
also called sensitivity kernel,

𝛿𝛿𝛿𝛿 =
∫
Ω

𝐾𝐾𝑠𝑠(𝒙𝒙)
𝛿𝛿𝛿𝛿(𝒙𝒙)

𝑠𝑠(𝒙𝒙)
d𝒙𝒙, 𝐾𝐾𝑠𝑠(𝒙𝒙) =

𝑁𝑁𝑠𝑠
∑

𝑛𝑛=1

𝑃𝑃𝑛𝑛(𝒙𝒙)𝑠𝑠
2(𝒙𝒙).� (16)

It is more straightforward to derive the sensitivity kernel with respect to station correction term 𝐴𝐴 𝑻̂𝑻  , given by

𝐾𝐾𝑇̂𝑇𝑖𝑖
= 2

𝑁𝑁𝑠𝑠
∑

𝑛𝑛=1

𝑁𝑁𝑟𝑟
∑

𝑗𝑗=1

𝑤𝑤𝑛𝑛𝑛𝑛𝑛𝑛𝑛

(

Δ𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛𝑛 − Δ𝑇𝑇 𝑜𝑜
𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑇̂𝑇𝑖𝑖 − 𝑇̂𝑇𝑗𝑗

)

, 𝑖𝑖 = 1, 2, . . . , 𝑁𝑁𝑟𝑟.� (17)

The adjoint-state method enables the computation of sensitivity kernels by solving one adjoint equation for each 
source instead of computing ray paths for all source-receiver pairs. The adjoint Equation 14 describes the trans-
portation of differential traveltime residuals backward from the receivers to the source along the negative gradient 
direction of the traveltime field. Since the actual source is outside the study region, the residuals are transported 
to the north, south, east, west, and/or bottom surface. Thus, the adjoint field is fixed as 0 only on the top surface, 
which differs from that in the adjoint-state traveltime tomography method for local earthquakes (Tong, 2021a). 
We employ the modified fast sweeping method (Leung & Qian, 2006) to solve the adjoint equation.

2.3.  Model Parameterization and Optimization Algorithm

The adjoint-state method computes the sensitivity kernel with respect to slowness on the forward modeling grid. 
However, directly discretizing model perturbations on the forward modeling grid is unsuitable. Because the grid 
spacing, which is required to be sufficiently fine to guarantee the accuracy of traveltime prediction, may exceed 
the resolving ability of seismic data. To address this problem, we adopt the multi-grid model parameterization 
(Tong et al., 2019) to discretize model perturbations.

We design H sets of inversion grids and denote the l-th node of the h-th grid by

𝒙𝒙
ℎ

𝑙𝑙
=
(

𝑟𝑟ℎ𝑖𝑖 , 𝜃𝜃
ℎ
𝑗𝑗 , 𝜙𝜙

ℎ

𝑘𝑘

)

, ℎ = 1,⋯,𝐻𝐻𝐻𝐻𝐻  = 1,⋯, 𝑁𝑁ℎ

𝐼𝐼
,� (18)

𝑗𝑗 = 1,⋯, 𝑁𝑁ℎ

𝐽𝐽
, 𝑘𝑘 = 1,⋯, 𝑁𝑁ℎ

𝐾𝐾
, 𝑙𝑙 = (𝑘𝑘 − 1)𝑁𝑁ℎ

𝐼𝐼
𝑁𝑁ℎ

𝐽𝐽
+ (𝑗𝑗 − 1)𝑁𝑁ℎ

𝐼𝐼
+ 𝑖𝑖𝑖� (19)

Every inversion grid should cover the study region

Ω ⊂

[

𝑟𝑟ℎ
1
, 𝑟𝑟ℎ

𝑁𝑁ℎ
𝐼𝐼

]

×

[

𝜃𝜃ℎ
1
, 𝜃𝜃ℎ

𝑁𝑁ℎ
𝐽𝐽

]

×

[

𝜙𝜙ℎ

1
, 𝜙𝜙ℎ

𝑁𝑁ℎ
𝐾𝐾

]

, ℎ = 1, . . . ,𝐻𝐻𝐻� (20)
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Each grid node is associated with a basis function

𝐵𝐵ℎ

𝑙𝑙
(𝒙𝒙) = 𝑢𝑢ℎ𝑖𝑖 (𝑟𝑟)𝑣𝑣

ℎ
𝑗𝑗 (𝜃𝜃)𝑤𝑤

ℎ

𝑘𝑘
(𝜙𝜙), 1 ≤ 𝑙𝑙 ≤ 𝐿𝐿ℎ

= 𝑁𝑁ℎ

𝐼𝐼
𝑁𝑁ℎ

𝐽𝐽
𝑁𝑁ℎ

𝐾𝐾
,� (21)

where

�ℎ� (�) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

� − �ℎ�−1
�ℎ� − �ℎ�−1

, if �ℎ�−1 ≤ � ≤ �ℎ� ,
�ℎ�+1 − �

�ℎ�+1 − �ℎ�
, if �ℎ� < � ≤ �ℎ�+1,

0, otherwise,

�ℎ� (�) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

� − �ℎ�−1
�ℎ� − �ℎ�−1

, if �ℎ� −1 ≤ � ≤ �ℎ� ,
�ℎ�+1 − �

�ℎ�+1 − �ℎ�
, if �ℎ� < � ≤ �ℎ�+1,

0, otherwise,

�ℎ
�(�) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

� − �ℎ�−1
�ℎ� − �ℎ�−1

, if �ℎ
�−1 ≤ � ≤ �ℎ

�,
�ℎ�+1 − �

�ℎ�+1 − �ℎ�
, if �ℎ

� < � ≤ �ℎ
�+1.

0, otherwise.

� (22)

Here 𝐴𝐴 𝐴𝐴ℎ
0
, 𝜃𝜃ℎ

0
, 𝜙𝜙ℎ

0
 and 𝐴𝐴 𝐴𝐴ℎ

𝑁𝑁ℎ
𝐼𝐼
+1
, 𝜃𝜃ℎ

𝑁𝑁ℎ
𝐽𝐽
+1
, 𝜙𝜙ℎ

𝑁𝑁ℎ
𝐾𝐾
+1

 can be specified as

�ℎ0 = 2�ℎ1 − �ℎ2 , �ℎ0 = 2�ℎ1 − �ℎ2 , �ℎ
0 = 2�ℎ

1 − �ℎ
2 ,

�ℎ
�ℎ
� +1

= 2�ℎ
�ℎ
�
− �ℎ

�ℎ
� −1

, �ℎ
�ℎ
� +1

= 2�ℎ
�ℎ
�
− �ℎ

�ℎ
� −1

, �ℎ
�ℎ
�+1

= 2�ℎ
�ℎ
�
− �ℎ

�ℎ
�−1

.� (23)

The model perturbation is assumed to be smooth and can be approximated as a linear combination of the basis 
functions related to a specific inversion grid. If we further average the perturbation models across all inversion 
grids, then the model perturbation can be formulated as

𝛿𝛿𝛿𝛿(𝒙𝒙)

𝑠𝑠(𝒙𝒙)
=

1

𝐻𝐻

𝐻𝐻
∑

ℎ=1

𝑁𝑁𝐿𝐿
∑

𝑙𝑙=1

𝛿𝛿𝛿𝛿ℎ

𝑙𝑙
𝐵𝐵ℎ

𝑙𝑙
(𝒙𝒙).� (24)

Plugging the above equation into Equation 16, we derive the sensitivity kernel of the objective function with 
respect to the auxiliary parameters 𝐴𝐴 𝐴𝐴ℎ

𝑙𝑙

𝛿𝛿𝛿𝛿 =

𝐻𝐻
∑

ℎ=1

𝑁𝑁𝐿𝐿
∑

𝑙𝑙=1

𝐾𝐾ℎ

𝑙𝑙
𝛿𝛿𝛿𝛿ℎ

𝑙𝑙
, 𝐾𝐾ℎ

𝑙𝑙
=

1

𝐻𝐻 ∫
Ω

𝐾𝐾𝑠𝑠(𝒙𝒙)𝐵𝐵
ℎ

𝑙𝑙
(𝒙𝒙)d𝒙𝒙.� (25)

This method simplifies the optimization problem in an infinite-dimensional function space into a problem in a 
finite-dimensional vector space, thus significantly reducing the number of unknowns. Additionally, averaging 
the perturbation models across multiple inversion grids mitigates the potential error caused by the subjective 
selection of a single inversion grid, which improves the robustness of the inversion and the reliability of the result.

We employ the step size-controlled gradient descent method to iteratively update the slowness and station correc-
tion terms (Tong, 2021a). The perturbations in the relative slowness and station correction terms are along the 
negative gradient direction, but their amplitudes are limited to less than 1% and 0.01 s at each iteration, respec-
tively. Note that the upper bounds for the perturbations decrease once the objective function increases, ensuring 
the convergence of iteration (J. Chen et al., 2023). In all, this restriction is similar to adding a damping parameter, 
which has been verified by previous studies (J. Chen et al., 2023; Liu et al., 2019; Tong, 2021a, 2021b).

3.  Application: Tomography of Thailand and Adjacent Regions
3.1.  Tectonic Background

The Indochina Peninsula, which sits above the mantle wedge of the subducting Indian Plate beneath the Eura-
sian and Sunda Plates (Y. Yu et al., 2017), is the largest landmass in Southeast Asia (Figure 2). This peninsula 
comprises two main blocks: the Shan-Thai Block in the northwest and the Indochina Block in the southeast, 
separated by the NE-SW trending Dien Bien Phu Fault. The Shan-Thai Block is bounded by the Sagaing Fault in 
the west and is separated from the South China Block (SCB) by the NW-SE trending Ailao Shan-Red River Fault 
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(ASRRF). The Indochina Block is also separated from the SCB by ASRRF in the north. Its southwestern edge is 
demarcated by the Wang Chao Fault and the Three Pagodas Fault (Singsoupho et al., 2014).

The collision between the Indian and Eurasian Plates since the early Eocene (Huchon et al., 1994; Tapponnier 
et al., 1982) has led to a southeastward displacement and clockwise rotation of the Shan-Thai Block and the Indo-
china Block along the ASRRF (Takemoto et al., 2009; K. Tanaka et al., 2008). This process has induced strong 
internal deformation in the Shan-Thai Block. In contrast, the Khorat Plateau, as the core of the Indochina Block, 
behaves like a rigid block with little internal deformation (K. Tanaka et  al.,  2008). Some studies (Takemoto 
et al., 2009; Yang et al., 2015) attribute this contrast to a thick lithosphere beneath the plateau that is imaged in 
numerous studies (H. Chen et al., 2021; Lebedev & Nolet, 2003; Li & van der Hilst, 2010; Li et al., 2006; Yang 
et al., 2015; C. Yu et al., 2017). However, the thick lithosphere with little internal deformation cannot explain 
the Cenozoic basalts originating from the mantle that is exposed in the southern and western margins of the 
Khorat Plateau (Yan et al., 2018; Zhou & Mukasa, 1997). To investigate the origin of the exposed basalts and 
to improve our understanding of the geological dynamics in the Indochina Peninsula, we take advantage of the 
recently deployed TSAR (S. Tanaka et al., 2019) and perform the adjoint-state teleseismic traveltime tomography 
to obtain a refined seismic velocity model beneath the Khorat Plateau and adjacent regions.

3.2.  Study Region and Seismic Data

Our study region is located in the central Indochina Peninsula, ranging from 97° to 106°E and from 12° to 21°N. 
The used teleseismic data were mainly recorded by 40 broadband seismic stations from the TSAR network oper-
ated from January 2017 to December 2018 (S. Tanaka et al., 2019). These stations are uniformly distributed in 
Thailand with an average station spacing of approximately 100 km (blue triangles in Figure 2). To improve the 

Figure 2.  The topographic map of the Indochina Peninsula. The black dashed lines represent major faults and sutures. SF, 
Sagaing Fault; TPF, Three Pagodas Fault; WCF, Wang-Chao Fault; DBPF, Dien Bien Phu Fault; ASRRF, Ailao Shan-Red 
River Fault; and SMS, Song Ma Suture. The black line denotes the boundary of the Khorat Plateau. The study region is 
within the red box. The blue triangles are seismic stations from the TSAR. The red squares denote additional permanent 
stations. The exposed basalts within the study region are shown in red. The surrounding subduction systems of the 
Indo-Australian, Pacific, and Philippine Sea Plates are labeled in the top left subfigure.
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station coverage, we also utilize the data recorded by 11 permanent stations in the same period (red squares in 
Figure 2).

We select teleseismic earthquakes with epicenter distances between 30° and 90° and magnitudes greater than 
5.0. Raw seismograms are processed by deconvolving the instrument response and applying a bandpass filter of 
0.02–0.2 Hz. Then, the MCCC technique is employed to accurately measure the differential traveltimes of first 
P-arrivals (VanDecar & Crosson, 1990). To avoid subjective selection of cross-correlation time window, we test 
11 time windows, beginning at 5 s before the theoretical arrival time computed in the AK135 model (Kennett & 
Engdahl, 1991) and having varying lengths ranging from 15 to 25 s with a gap of 1 s. The differential traveltime 
is chosen based on the highest cross-correlation coefficient among all time windows (see an example in Figure 3).

We apply strict data selection criteria to refine the differential traveltime data. First, we only retain the wave-
forms with a signal-to-noise ratio (SNR) greater than 2.0, where the SNR is the ratio of the average amplitude 
in the signal window (from 0 to 15 s with respect to the theoretical arrival time) to that in the noise window 
(from −15 to 0 s). Second, we discard signals with a standard deviation of residuals greater than 1 s or an aver-
age cross-correlation coefficient less than 0.7 in MCCC. These two criteria are commonly used to elevate the 
quality of the signals and the associated differential traveltimes (VanDecar & Crosson, 1990). Third, we limit 
the inter-station distance to less than 2.5°, aiming at enhancing the overlapping of the wave paths outside the 
study region. This limitation can mitigate the influence of outside anomalies on the differential traveltimes (Liu 
et al., 2018, 2019; Yao et al., 2021). In addition, to reduce earthquake clustering, we divide the global region into 
subdomains with a spacing of 5° in azimuth, 5° in epicenter distance, and 100 km in depth. The top three earth-
quakes in terms of the number of reliable records are selected in each subdomain. The differential traveltime data 
of the unselected earthquakes are used to verify the final model (see data coverage in Figure S1 in Supporting 
Information S1). In total, we obtain 15,205 reliable differential traveltimes from 190 teleseismic earthquakes for 
the inversion (Figure 4). These data densely cover the study region, particularly the Khorat Plateau.

Figure 3.  An example of differential traveltime measurement using the multi-channel cross-correlation (MCCC) technique. (a) Event location map. The blue star is 
the earthquake. The study region is within the red box. The dashed circles denote epicenter distances of 30°, 60°, and 90°. (b) The great-circle paths (green lines) of the 
teleseismic traveltime data from the earthquake to the seismic stations (black squares). (c) The event waveforms aligned with the computed arrival time (blue line) using 
MCCC. The red dotted lines are the theoretical arrival times computed in the AK135 global reference model (Kennett et al., 1995). Multiple time windows are used 
to determine the optimal cross-correlation differential traveltime. These time windows have varying lengths from 15 to 25 s, which begin at the left boundary of the 
yellow-shaded interval and end within the green-shaded interval. “sigma” denotes the standard deviation of residuals in second, and “cc coe” means the average value 
of the cross-correlation coefficients related to other waveforms.
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3.3.  Checkerboard Resolution Test

We perform a checkerboard resolution test to assess the resolving ability of the selected differential traveltime 
data. The initial model (Figure S2 in Supporting Information S1) is constructed by adopting the Crust1.0 model 
(Laske et al., 2013) for the crustal P-wave velocity and setting the mantle P-wave velocity based on the global 
reference AK135 model (Kennett et al., 1995). The checkerboard model is constructed by assigning positive and 
negative velocity perturbations to the initial model in a staggered manner (Figure S3 in Supporting Informa-
tion S1), which is expressed by

Δ�(�)
�(�)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

4% ⋅ sin
(

� − 97◦

3◦
⋅ 2�

)

sin
(

� − 12◦

3◦
⋅ 2�

)

sin
(

�
200

⋅ 2�
)

, 0 km ≤ � ≤ 200 km,

3% ⋅ sin
(

� − 97◦

3◦
⋅ 2�

)

sin
(

� − 12◦

3◦
⋅ 2�

)

sin
(

� − 200
300

⋅ 2�
)

, 200 km ≤ � ≤ 350 km,

2% ⋅ sin
(

� − 97◦

3◦
⋅ 2�

)

sin
(

� − 12◦

3◦
⋅ 2�

)

sin
(

� − 200
300

⋅ 2�
)

, 350 km ≤ � ≤ 500 km.

� (26)

The observational differential traveltimes are computed numerically in the checkerboard model. To mimic the 
data noise, we assign Gaussian noise with mean 0 s and standard deviation 0.1 s to the computed differential 
traveltimes (Figure S4a in Supporting Information S1). We begin the inversion with the initial model and keep 
the same source-receiver configuration as that of the real data.

Examples of individual, event, and misfit kernels are shown in Figure 5, in which the misfit kernel exhibits consist-
ency with the pattern of checkerboard velocity anomalies. A total of five inversion grids are positioned in a staggered 
way along the diagonal direction (Figure S5 in Supporting Information S1). To prevent spatial aliasing, we ensure 
that every wavelength anomaly is approximately sampled by five nodes of each inversion grid (Tong, 2021a). After 
40 iterations, the standard deviation of differential traveltime residuals decreases from 0.241 to 0.112 s, which is close 
to the noise level (Figures S4b and S4c in Supporting Information S1). The results show that the alternating pattern 
of the velocity anomalies is well recovered beneath the region covered by the seismic network (within the gray box in 
Figure 6), which suggests that the selected data can reveal the subsurface velocity heterogeneity in our study region.

4.  Tomographic Results and Restoration Resolution Tests
We follow the same inversion procedures as the checkerboard resolution test but use real differential traveltime 
data to image the subsurface velocity structures. After 40 iterations, the standard deviation of the differential 

Figure 4.  (a) The distribution of seismic stations (black squares) and great-circle paths associated with the teleseismic traveltime data for inversion. Major faults and 
sutures are denoted by black dashed lines. The black lines denote the boundary of the Khorat Plateau. (b) The distribution of the teleseismic earthquakes used for 
inversion. The study region is within the red box. The dashed circles denote epicenter distances of 30°, 60°, and 90°.
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Figure 5.  Horizontal sections of the sensitivity kernels computed in the initial model for the checkerboard resolution test. (a) The individual kernel corresponding to 
the earthquake shown in Figure 3 and a pair of stations (green squares). (b) The event kernel corresponding to the same earthquake and all station pairs. (c) The misfit 
kernel corresponding to all teleseismic earthquakes and station pairs. The black squares, shown at the section of 50 km depth, are seismic stations. The blue and red 
dashed boxes outline the positive and negative velocity perturbations of the checkerboard model, respectively.
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traveltime residuals reduces from 0.370 to 0.177 s (Figures S6a and S6b in Supporting Information S1). Though 
the verification data (Figure S1 in Supporting Information S1) are not inverted, the standard deviation of their 
residuals also decreases from 0.380 to 0.231 s (Figure S6c in Supporting Information S1), suggesting the robust-
ness of the final model.

The imaging results reveal several significant velocity anomalies in the study region. First, a broad high-velocity 
anomaly, labeled as H1, has been identified beneath the Khorat Plateau at depths of 50–250 km (Figures 7a–7e), 
which is gradually replaced by a low-velocity anomaly labeled as L3 at greater depths (Figures 7f–7h, 8a, and 8c). 
Second, a low-velocity anomaly (L1) is observed adjacent to the western margin of the Khorat Plateau, extending 
to a depth of 350 km (Figures 7a–7g, 8a, and 8b). Third, an eastward dipping low-velocity anomaly labeled as 
L2 is imaged in the southern margin of the Khorat Plateau. Its shallow part above 200 km depth is located at the 
southwestern corner of the plateau and is connected with L1 (Figures 7a–7d). As depth increases, the deep part 
of L2 below 200 km depth extends eastward and is separated from L1 (Figures 7e–7h and 8b). The locations of 
L1 and L2 coincide with the presence of exposed Cenozoic basalts in the western and southern margins of the 
Khorat Plateau. It is worth noting that the high- and low-velocity anomalies in our model should be regarded as 
positive and negative velocity perturbations relative to other parts of the model since only the differential travel-
times are inverted.

Teleseismic waves propagate upward to seismic stations on the surface, potentially causing vertical smearing in 
the imaging results. To verify the reliability of the labeled velocity anomalies, we perform a restoration resolution 
test, in which the target model is built by incorporating the labeled velocity anomalies H1, L1, L2, and L3. The 
result suggests that all the labeled anomalies can be successfully recovered (Figure 9). In the horizontal sections 
(Figures 9a–9h), the recovered velocity anomalies are in good agreement with the target model thanks to the 
dense station spacing. However, we can observe the smearing of the high-velocity anomaly H1 in a downward 
direction (Figures 9i and 9l), which seems to resemble the downward extension of H1 in the real-data imaging 
results (Figures 8a and 8d). The presence of H1 in our imaging result is consistent with previous studies (Li 

Figure 6.  Horizontal and vertical sections of the inversion result of the checkerboard resolution test. (a) Horizontal sections at different depths. Regions within the gray 
box are considered resolvable. The black dashed lines mark the locations of the vertical sections. The black squares denote seismic stations. (b) The vertical sections 
crossing the center of checkerboard anomalies. The red vertical lines on the top denote the locations of other vertical profiles. The black squares represent the seismic 
stations within 0.75° along the profile.
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et al., 2006; Yang et al., 2015). However, its thickness, which is suggested to be 150–200 km in previous studies, 
is not well constrained in our images due to the poor vertical resolving ability of the upward propagating waves.

The smearing of H1 in the restoration test indicates that all the anomalies in Figure 9 may have been distorted in 
the downward direction. Therefore, we conduct two additional restoration resolution tests to assess the reliabil-
ity of L1 and L2. In the second test, only H1 and the sections above 200 km depth of L1 and L2 are preserved 
in the target model. The results show partial downward smearing of L1 and L2, but the amplitudes decrease 
significantly as depth increases beyond 200 km depth (Figures S7i and S7j in Supporting Information S1). This 
phenomenon differs from the real-data inversion (Figures 8a and 8b) and the first restoration test (Figures 9i 
and 9j), where the amplitudes of L1 and L2 at depths below 200 km are as strong as those of the shallow parts. 

Figure 7.  Horizontal sections of the imaging results. The images outside the station coverage are clipped out according to the gray box in Figure 6. Major faults and 
sutures are denoted by black dashed lines. The black lines denote the boundary of the Khorat Plateau. The green dashed lines are the locations of vertical sections in 
Figure 8. The red dots are the locations of exposed Cenozoic basalts.
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Thus, the deep parts of L1 and L2 are likely reliably resolved rather than artifacts caused by smearing. However, 
due to the relatively poor data coverage in the west, north, and south directions, it remains unclear whether the 
deep and shallow parts of L2 are connected or not. In the third test, we further exclude the shallow part of L2 from 
the target model of the second test. The purpose of this test is to verify the reliability of the shallow part of L2, 
the low-velocity anomaly in the southwestern corner of the Khorat Plateau above 200 km depth. The absence of 
L2 in the inverted model (Figures S8a–S8d, S8i, and S8j in Supporting Information S1) confirms its reliability.

5.  Discussion
Tectonic activities in the Indochina Block have been primarily shaped by the collision of the Indian and Eurasian 
Plates since the early Eocene, resulting in substantial southeast extrusion and a clockwise rotation of the block 
(Huchon et al., 1994; Takemoto et al., 2009; Tapponnier et al., 1982). However, some evidence, such as the unde-
formed Mesozoic sediments covering a large portion of the Khorat Plateau (Richter & Fuller, 1996) and paleo-
magnetic studies (Sato et al., 2007; Takemoto et al., 2009; K. Tanaka et al., 2008), suggest that the Khorat Plateau 
has experienced much less internal deformation than the Shan-Thai block. The reason may be attributed to a cold 
and thick lithosphere beneath the plateau, imaged as a high-velocity anomaly (H1) in our tomographic result. 
The presence of this anomaly agrees with previous tomographic observations (H. Chen et al., 2021; Lebedev 
& Nolet, 2003; Li & van der Hilst, 2010; Li et al., 2006; Yang et al., 2015). According to the thermal structure 
inferred from S-wave velocity (C. Yu et al., 2017), this thick lithosphere is about 100°C colder than surround-
ing regions, making it more viscous (Lee et al., 2011) and thus less susceptible to internal deformation (Yang 
et al., 2015).

Figure 8.  Vertical sections of the imaging result. The images outside the station coverage are clipped out. In panel (b), the black arrows represent the mantle upwelling, 
and the blue circle denotes the location of the thin mantle transition zone in Y. Yu et al. (2017), where a possible slab window is observed (Pesicek et al., 2008). The 
notations for other features within a distance of 0.75° along each profile are the same as those shown in Figure 7.
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Figure 9.  The horizontal and vertical sections of the target model and the inversion result of the first restoration resolution test. All labeled anomalies in Figure 7 are 
included in the target model. The notations and profile locations are identical to those in Figures 7 and 8.
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Although the Khorat Plateau behaves like a rigid block, the presence of late Cenozoic volcanic activities along the 
southern and western margins of the Khorat Plateau may indicate lithospheric modifications beneath the plateau 
(Wu et  al.,  2022). The trace element pattern and Sr-Nd-Hf-Pb isotopic composition of the exposed basaltic 
rocks exhibit oceanic island basalt (OIB)-like characteristics, indicating an origin in the mantle (Yan et al., 2018; 
Zhou & Mukasa, 1997). Our tomographic result reveals two low-velocity anomalies (L1 and L2) beneath the 
western and southern margins of the Khorat Plateau, which coincide with the low-velocity body uncovered to 
the southwest of the Khorat Plateau by Li and van der Hilst  (2010). The low-velocity anomalies, L1 and L2, 
possibly signify mantle upwelling. They may represent the source zones for the basalts observed in the southwest 
of the plateau, implying that the lithosphere beneath the southern and western margins of the plateau may have 
been modified. The presence of mantle upwelling is consistent with geodynamic simulations, which suggest that 
mantle convection in the South China Sea is driven by the kinematic motion of surrounding plates and mantle 
density-driven buoyant flows (Lin et  al.,  2019). Consequently, the mantle upwelling beneath the margins of 
the Khorat Plateau may arise from mantle convection triggered by the surrounding subduction systems of the 
Indo-Austrailian, Pacific, and Philippine Sea Plates (Lin et al., 2019).

Moreover, Y. Yu et al. (2017) reported a thinner mantle transition zone (MTZ) beneath the western margin 
of the Khorat Plateau (area B in Y. Yu et  al.  (2017))), which is connected with the root of the western 
low-velocity anomaly (L1) in our model (Figure  8b). The thinner MTZ is believed to be associated with 
a suggested slab window of the Indian Plate (Pesicek et al., 2008; Y. Yu et al., 2017). The detachment of 
the Indian subducting slab allows hot asthenospheric materials to flow up into or through the slab window, 
leading to mantle upwelling (Arboit et  al.,  2016). Thus, in addition to the mantle convection caused by 
subduction as discussed by Lin et al. (2019), the asthenospheric upwelling caused by the detachment of the 
Indian slab may also be a contributory factor to the mantle upwelling of L1. Both mechanisms are supported 
by the similar geochemical signatures of the basalts originating from mantle sources (Yan et al., 2018; Zhou 
& Mukasa, 1997).

6.  Conclusions
We have developed a novel framework for teleseismic traveltime tomography based on the adjoint-state method. 
The tomographic inverse problem is formulated as an Eikonal equation-constrained optimization problem. The 
computation of ray paths is totally avoided in the forward modeling and sensitivity kernel generation, which 
avoids the potential failures of conventional shooting and bending methods for ray tracing and makes the compu-
tational cost nearly independent of the number of receivers. The multi-grid model parameterization and step 
size-controlled gradient descent method are employed to update the model parameters. The efficacy of our new 
method is tested using recently recorded teleseismic differential traveltime data to image the velocity structure 
beneath Thailand and its adjacent regions.

The tomographic result reveals a thick lithosphere beneath the Khorat Plateau and signifies mantle upwelling 
along its western and southern margins. The mantle upwelling is probably driven by surrounding subduction 
systems, with the western one possibly originating from the slab window of the Indian Plate. The presence of 
the mantle upwelling correlates with the source zone of erupted Cenozoic basalts, suggesting lithospheric modi-
fication beneath the southern and western margins of the plateau. Our model provides convincing evidence for 
the existence of mantle upwelling beneath the western and southern margins of the Khorat Plateau, offering new 
insights into geological dynamics in the Indochina Peninsula and validating the effectiveness of our new tomo-
graphic inversion method.

Data Availability Statement
The waveform data of the TSAR (S. Tanaka et al., 2019) can be accessed via the link: http://ohpdmc.eri.u-tokyo.
ac.jp/breq-fast-tsar/index.html. The data from 11 additional permanent stations are accessible in the Incorporated 
Research Institutions for Seismology (IRIS) Data Management Center via the link: http://ds.iris.edu/mda/TM/
PBKT/?starttime=2008-01-01&endtime=2599-12-31.
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