
Journal of Computational Mathematics

Vol.41, No.3, 2023, 417–438.

http://www.global-sci.org/jcm

doi:10.4208/jcm.2109-m2021-0045

THE WASSERSTEIN-FISHER-RAO METRIC FOR WAVEFORM
BASED EARTHQUAKE LOCATION*

Datong Zhou, Jing Chen, Hao Wu1) and Dinghui Yang

Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China

Email: zdt14@mails.tsinghua.edu.cn, jing-che16@mails.tsinghua.edu.cn,

hwu@tsinghua.edu.cn, ydh@mail.tsinghua.edu.cn

Lingyun Qiu

Yau Mathematical Sciences Center, Tsinghua University, Beijing China 100084;

Yanqi Lake Beijing Institute of Mathematical Sciences and Applications, Beijing 101408, China

Email: lyqiu@tsinghua.edu.cn

Abstract

In this paper, we apply the Wasserstein-Fisher-Rao (WFR) metric from the unbalanced

optimal transport theory to the earthquake location problem. Compared with the quadrat-

ic Wasserstein (W2) metric from the classical optimal transport theory, the advantage of

this method is that it retains the important amplitude information as a new constraint,

which avoids the problem of the degeneration of the optimization objective function near

the real earthquake hypocenter and origin time. As a result, the deviation of the global

minimum of the optimization objective function based on the WFR metric from the true

solution can be much smaller than the results based on the W2 metric when there exists

strong data noise. Thus, we develop an accurate earthquake location method under strong

data noise. Many numerical experiments verify our conclusions.

Mathematics subject classification: 65K10, 86C08, 86A15, 86A22.

Key words: The Wasserstein-Fisher-Rao metric, The quadratic Wasserstein metric, Inverse

theory, Waveform inversion, Earthquake location.

1. Introduction

The optimal transport theory is widely applied in seismology in recent years, leading to more

accurate inversion results in the field of geophysical inverse problems, e.g., earthquake location

and seismic tomography [11–13, 30, 31, 35, 52, 53]. In these models, appropriate seismic param-

eters should match the synthetic signals with the observations [36]. From the mathematical

point of view, an approximate relationship can be established between seismic parameters m

and synthetic seismic signals dsyn(m) by numerically calculating wave equations. Solving this

inverse problem requires m to minimize the difference between the synthetic dsyn(m) and the

observations dobs for a specific metric. The adjoint state method is widely applied to this PDE

constrained optimization problem [4–6,14,42–44,50]. The Fréchet gradient of the optimization

objective function can be obtained by comparing dobs with dsyn(m), which is used to update

the seismic parameters m.

In the past, limited by the computational power, the relationship between parametersm and

signals dsyn(m) was established based on the ray theory [17,46,51]. Under this high-frequency
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assumption, some finite frequency phenomena such as wave-front healing and scattering are

ignored [42], leading to inaccurate inversion results. With the rapid increase of computational

power in recent years, it gradually becomes possible to numerically calculate the wave equation

to obtain more accurate synthetic seismic signals dsyn(m), which mitigates the bias from the

high-frequency assumption and raise the inversion resolution reaching the wavelength scale

[32,36,42,44,54,56,57].

However, the traditional L2 norm based waveform inversion suffers from the cycle-skipping

problem [26]. Especially for the earthquake location problem, seismic signals are sensitive to

the perturbation of the origin time and the earthquake hypocenter. Thus, under the framework

of L2 norm, this point-to-point comparison between signals might generate numerous local

minimums, leading to inaccurate inversion results or excessive iteration steps [4, 12]. Based

on the optimal transport theory, the Wasserstein metric provides a new perspective to solve

these mentioned problems [4, 11, 12, 14, 30, 31, 37, 45, 52, 53]. By comparing signals globally,

the Wasserstein metric defined optimization objective function guarantees better convexity

property and mitigates the influence of noise. Thus, reasonably accurate inversion results

can be expected when the data is contaminated with high-intensity noise [4]. These accurate

inversion results could provide significant guidance for the establishment of the early warning

system [38], mineral exploration [9], and the siting of major facilities [3].

The quadratic Wasserstein metric requires mass conservation [45]. Thus, the normaliza-

tion process is mandatory for seismic signals, which becomes an essential limitation. For the

earthquake location problem, the amplitude of seismograms provides necessary constraints to

the origin time and the distance from the hypocenter to the receiver. Simply normalizing the

signals would lead to a nearly flat optimization objective function along a certain direction

due to the trade-off between the origin time and the distance. Thus, the minimum point of

the optimization objective function may deviate a lot even under the small magnitude of data

noise, which leads to low accurate location results, see Examples 3.1 for illustration.

The Wasserstein-Fish-Rao (WFR) metric is a newly developed optimal transport metric

and has attracted much attention [7, 8]. This metric is an interpolation between the quadratic

Wasserstein metric and the Fisher-Rao metric. From the fluid dynamics point of view [1], this

new metric introduces a source term in the continuity equation, allowing the direct comparison

between two signals with different total integrals. Thus this metric is also called unbalance

optimal transport metric [16, 18, 25, 34], which has been successfully applied in various fields

[15, 48, 55]. Benefited from the above features, the normalization of the seismic signals is no

longer required. Therefore, the important amplitude information is retained based on the WFR

metric, improving the local convexity and avoiding the degeneracy of the optimization objective

function near the global minimum point.

Remark 1.1. The Kantorovich-Rubinstein (KR) norm [30,31] does not require the signals to

have the same integral. However, the convexity of the optimization objective functions defined

with the KR norm may not be guaranteed for the earthquake location problems. For more

details, we refer to see [4], especially Figs. 2-3 for illustration.

Remark 1.2. In [4], we clearly see the superiority of the quadratic Wasserstein metric to the

L2 metric. So in this paper, we prefer to focus on the comparison between the new WFR metric

and the quadratic Wasserstein metric.

In this paper, we introduce the WFR metric to the earthquake location problem. It is a

significant extension of optimal transport theory in the application to the geophysical inverse
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problem. Compared to the classical Wasserstein metric, the normalization process is no longer

compulsory, indicating the amplitude of seismic signals could provide significant constraints to

the inversion. Figs. 3.3-3.6 illustrate better local convexity and non-degeneracy for the WFR

metric, which means less sensitivity to strong data noise. Thus, we can expect more accurate

results for the WFR metric based inversion method.

This paper is organized as follows. In Section 2, the earthquake location problem coupled

with the adjoint state method is reviewed. We then introduce the WFR metric and apply it

to the earthquake location problem in Section 3. In Section 4, the numerical experiments are

provided to demonstrate the effectiveness and efficiency of the new method. Finally, we make

some conclusive remarks in Section 5.

2. The Earthquake Location Problem

We now review the earthquake location problem and the adjoint state method. From the

mathematical point of view, the waveform based earthquake location problem can be formulated

as an optimization model with PDE constraints [4, 5, 50]

(ξT , τT ) = argmin
ξ,τ

∑
r

χr(ξ, τ). (2.1)

Here (ξT , τT ) are the true earthquake location and origin time, r denotes the index of receivers,

and the corresponding misfit function χr(ξ, τ) with respect to the earthquake location ξ and

origin time τ is defined as

χr(ξ, τ) = D(dr(t), s(ηr, t)) , Dr(s). (2.2)

In the above equation, dr(t) and s(x, t) are the observed and synthetic earthquake signals,

respectively. D measures the distance between them, which will be specified later. For simpli-

fication, we will write the Fréchet derivative of Dr(s) to s(t) as ∇sD(t). The two wavefields,

dr(t) = u(ηr, t; ξT , τT ), s(x, t) = u(x, t; ξ, τ), (2.3)

can be regarded as the solutions to the following scalar acoustic wave equation with initial-

boundary conditions

∂2u(x, t; ξ, τ)

∂t2
= ∇ ·

(
c2(x)∇u(x, t; ξ, τ)

)
+R(t− τ)δ(x− ξ), x, ξ ∈ Ω, (2.4)

u(x, 0; ξ, τ) = ∂tu(x, 0; ξ, τ) = 0, x ∈ Ω, (2.5)

n ·
(
c2(x)∇u(x, t; ξ, τ)

)
= 0, x ∈ ∂Ω. (2.6)

Here c(x) is the acoustic wave speed, and ηr denotes the location of the r−th receiver. The

point source δ(x−ξ) is used to model the seismic rupture inside the simulation domain Ω ⊂ Rd.
This assumption is reasonable since the scale of seismic rupture is much smaller than that of

the seismic wave [27]. The seismic source is simplified modeled in the form of Ricker wavelet

R(t) = A(1− 2π2f2
0 t

2)e−π
2f2

0 t, (2.7)

in which f0 is the dominant frequency and A is the indication parameter of amplitude. On the

boundary ∂Ω, the reflection condition (2.6) is used for simplification and n is the outward unit

normal vector to the domain Ω. We can also easily consider the other boundary conditions,

e.g., the perfectly matched layer absorbing boundary condition [19].
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2.1. The adjoint method

To solve this optimization problem (2.1), it is necessary to obtain the gradient of the misfit

function χr(ξ, τ) in (2.2) with respect to the earthquake hypocenter ξ and the origin time τ .

For the perturbation of the misfit δχ(ξ, τ) resulted from the perturbation of earthquake

hypocenter δξ and the origin time δτ , we assume it has the formulation of

δχr =D(dr(t), s(ηr, t) + δs(ηr, t))−D(dr(t), s(ηr, t)) = Dr(s+ δs)−Dr(s)

≈〈∇sDr(t), δs(ηr, t)〉 =

∫ T

0

∇sDr(t)δs(ηr, t)dt. (2.8)

Next, following the similar manner in Section 3.1 of [4], the relation between δχr with δξ

and δτ can be obtained as

δχr = Kξ
r · δξ +Kτ

r δτ, (2.9)

Kξ
r =

∫ T

0

R(t− τ)∇wr(ξ, t)dt, (2.10)

Kτ
r = −

∫ T

0

R′(t− τ)wr(ξ, t)dt, (2.11)

where the adjoint wavefield wr(ξ, t) satisfies

∂2wr(x, t)

∂t2
= ∇ ·

(
c2(x)∇wr(x, t)

)
+∇sDr(t)δ(x− ηr), x ∈ Ω, (2.12)

wr(x, T ) = ∂twr(x, T ) = 0, x ∈ Ω, (2.13)

n ·
(
c2(x)∇wr(x, t)

)
= 0, x ∈ ∂Ω. (2.14)

3. The Wasserstein-Fisher-Rao Metric

Consider two non-negative distributions µ and ν belong to the Borel measures denoted by

M(Ω) on a compact convex spatial domain Ω ⊂ Rn (e.g., Section 1.5 in [7]). The WFR metric

with the interpolating parameter 0 < γ <∞ is defined by solving a minimizing problem [7]:

WFRγ(µ, ν) =

(
inf
ρ,v,α

∫ 1

0

∫
Ω

(
1

2
|v(t,x)|2 +

γ2

2
α(t,x)2

)
ρ(t,x)dxdt

) 1
2

, (3.1)

under the constraint that the triplet (ρ, v, α) satisfies the following continuity equation:{
∂tρ+∇ · (ρv) = ρα,

ρ(0, ·) = µ, ρ(1, ·) = ν.
(3.2)

Here ρ is arbitrary time-dependent density, v is an arbitrary velocity field that stands for the

movement of mass, and α is an arbitrary scalar field associated with the creation and destruction

of mass. This kind of metric was defined and studied simultaneously and independently in

[7, 16, 18, 24], with quite different approaches. In this paper, we mainly follow the approach

of [7].

For |µ| = |ν| and γ → ∞, the source term ρα in the continuity equation is depleted

(i.e. α ≡ 0) and the metric degenerates to the dynamical formulation of Wasserstein metric

of Benamou and Brenier in [1]. Developing the numerical method of the classical optimal
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transport problems is still a very active topic recently, and several numerical methods are

suggested [1,2,12,21,23,28,29,33,47]. Some of these methods can be extended to the generalized

problems introduced in (3.1)-(3.2).

Like the classical Wasserstein metric, the minimizing problem of the WFR metric has a

static primal form (e.g., [7, 8])

WFR2
γ(µ, ν) = inf

λ(x,y)

{∫
c(x,y) dλ(x,y) +KL(λ1|µ) +KL(λ2|ν) :∫
Ω

λ(x,y)dy = λ1(x),

∫
Ω

λ(x,y)dx = λ2(y)
}
, (3.3)

where

c(x,y) = − log

(
cos2

+

(‖xi − yj‖
2γ

))
, cos+(z) =

{
cos(z) for z < π

2 ,

0, for z ≥ π
2 ,

(3.4)

KL(ρ|µ) =

∫
ϕKL

(
dρ

dµ

)
dµ, ϕKL(s) =


s log s− s+ 1, for s > 0,

1, for s = 0,

+∞, otherwise.

In order to numerically calculate this metric, its dual form can be written as:

WFR2
γ(µ, ν) = 2γ2 sup

φ, ψ

{∫ (
1− e−φ

)
dµ+

∫ (
1− e−ψ

)
dν : φ(x) + ψ(y) ≤ c(x,y)

}
. (3.5)

In the numerical realization, these two distributions are assumed to be atomic distributions,

µ =

N∑
i=1

µiδxi , ν =

M∑
j=1

νjδyj , µi ≥ 0, νj ≥ 0. (3.6)

In this discrete setting, (3.5) can be reformulated as

WFR2
γ

 N∑
i=1

µiδxi ,

M∑
j=1

νjδyj


= 2γ2 sup

φi,ψj

∑
i

(1− e−φi)µi +
∑
j

(1− e−ψj )νj : φi + ψj ≤ c(xi,yj)

 . (3.7)

To solve this constrained optimization problem directly is difficult in numerical realization.

Instead, an entropy regularization is introduced to obtain a free-constrained optimization prob-

lem:

2γ2 sup
φi,ψj

∑
i

(1− e−φi)µi +
∑
j

(1− e−ψj )νj + ε
∑
ij

(
1− e

φi+ψj
ε

)
e−

cij
ε

 , (3.8)

with cij = c(xi,yj). This problem is strictly convex by introducing the regularization term.

Moreover, the solution of the regularized problem (3.8) is unique and should converge to the

original problem (3.7) as ε→ 0 [8].
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The regularized problem (3.8) can be easily solved by the iterative proportional fitting

procedure [2, 8, 37]. The global maximum of this problem can be obtained by alternatively

maximizing the optimization objective function with respect to φi and ψj , i.e. φ(`+1) = arg maxφ
∑
i

(
(1− e−φi)µi − εeφi/ε

∑
j e

(ψ
(`)
j −cij)/ε

)
,

ψ(`+1) = arg maxψ
∑
j

(
(1− e−ψj )νj − εeψj/ε

∑
i e

(φ
(`+1)
i −cij)/ε

)
.

(3.9)

These maximization steps can be done by pointwise computation: φ̃
(`+1)
i =

(
µi
/(∑

j e
−cij/εψ̃

(`)
j

))1/(1+ε)

,

ψ̃
(`+1)
j =

(
νj
/(∑

i e
−cij/εφ̃

(`+1)
i

))1/(1+ε)

,

in which

φ̃
(`)
i = eφ

(`)
i /ε, ψ̃

(`)
j = eψ

(`)
j /ε.

This is how the WFR metric (3.7) is solved numerically in practice [8]. In [39], there is a

detailed discussion on the techniques arising in the implementation of the algorithm.

Remark 3.1. The parameter γ controls the interpolation between two terms of the minimiza-

tion problem (3.1). As suggested in [7], the larger γ is, the lower amount of mass will be

created or removed, and the WFR metric’s behavior will be more like the classical Wasserstein

metric. On the other hand, as γ vanishes, the behavior of the WFR metric will approach to the

Fisher-Rao metric. Detailed effects of γ on the WFR metric are discussed via several numerical

experiments in Example 3.1.

Remark 3.2. The selection of the parameter ε appearing in (3.8) is still an important and

open problem (e.g., the end of Section 4.4.2 in [8]). As we know, the smaller ε implies more

accurate calculation of the WFR metric but leads to more iterative steps. Several heuristic

selection criteria are proposed to accelerate the convergence of Sinkhorn iteration, e.g., the first

paragraph of Section 4.4.2 in [8], the second to last paragraph of Section 3 in [20], and the

last paragraph of Section 4 in [40]. In this paper, we follow their ideas to start the Sinkhorn

iteration from ε = 1 and gradually decrease it through the iteration. Detailed implementation

and analysis are discussed in Section 4.4.2 of [8].

3.1. Application to the Earthquake Location problems

We now turn to the application of the WFR metric to the earthquake location problem.

This can be simply done by defining the distance D in (2.2) using the WFR metric (3.1)-(3.2),

and the optimization objective function is formulated as

Θ(ξ, τ) =
∑
r

χr(ξ, τ) =
∑
r

D(dr(t), s(ηr, t)) =
∑
r

WFR2
γ

(
dr(t)

2, s(ηr, t)
2
)
. (3.10)

In the above equation, we square the seismic data to ensure the non-negativeness. Equations

(2.1)–(2.7), (3.1)–(3.2) and (3.10) provide the mathematical model to the waveform based

earthquake location problems with the WFR metric. To obtain the gradient of the misfit
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function χr(ξ, τ) with respect to the earthquake hypocenter ξ and the origin time τ , we firstly

define

F (φ, ψ, f, g) = 2γ2

(∫ T

0

(
1− e−φ(t)

)
f2(t)dt+

∫ T

0

(
1− e−ψ(t)

)
g2(t)dt

)
,

Π = {(φ, ψ) : φ(t1) + ψ(t2) ≤ c(t1, t2), ∀t1, t2 ∈ [0, T ]} ,

according to (3.5) and (3.10). Here we have

WFR2
γ(f(t)2, g(t)2) = sup

(φ,ψ)∈Π

F (φ, ψ, f, g) = F (φ∗, ψ∗, f, g),

where φ∗(t) and ψ∗(t) are specific functions that ensure the functional F (φ, ψ, f, g) to reach the

supreme. Through a simple discussion, we can get

∇gWFR2
γ(f2, g2) = ∂gF (φ∗, ψ∗, f, g),

thus the perturbation of the WFR metric with respect to δg can be written as

WFR2
γ

(
f2, (g + δg)2

)
−WFR2

γ

(
f2, g2

)
=

∫ T

0

4γ2
(

1− e−ψ
∗(t)
)
g(t)δg(t)dt+O(δg(t)2). (3.11)

Ignoring the second-order term in (3.11), this formulation exactly satisfies the assumption

of (2.8). Thus, the gradient can be obtained from (2.9)–(2.11) with ∇sDr(t) in (2.12) specified

as

∇sDr(t) = 4γ2(1− e−ψ
∗(t))s(ηr, t) (3.12)

3.2. Advantages of the WFR metric based optimization objective function

As we have already discussed, the main difference between the WFR metric and the clas-

sical quadratic Wasserstein metric [4] is that the WFR metric does not need to normalize the

seismic signal, thus retaining the important amplitude information. This amplitude informa-

tion provides necessary constraints to the earthquake location. In the following example, we

are going to illustrate a situation that the optimization objective functions induced by the

quadratic Wasserstein metric are degenerate near the minimum. As a consequence, even small

noise on the signal would make the global minimum of optimization objective function far from

the earthquake hypocenter. By introducing the source term, the WFR metric allows the lo-

cal, unbalanced comparison between signals. This relieves the degeneracy of the optimization

objective function, making the global minimum closed to the actual earthquake hypocenter.

We are aware that the global convexity of optimization objective function induced by the

WFR metric is not as good as the quadratic Wasserstein metric since the WFR metric introduces

the local Fish-Rao metric. Nevertheless, in the neighborhood of the minimum, good convexity

property is still conserved for the WFR metric. Its optimization objective function is not as

degenerate as that induced by the classical quadratic Wasserstein metric. As a consequence,

less deviation of global minimum under larger magnitude of data noise can still be expected by

using the WFR metric based optimization objective function. Now, we perform a numerical

example to illustrate this perspective.
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Fig. 3.1. Illustration of two-layer model in Example 3.1. The inverted magenta triangles indicate

the receivers. The red and blue pentagrams indicate the earthquake hypocenter above and below the

Conrad discontinuity, respectively.

Table 3.1: The two-layer model in Example 3.1: the horizontal positions of receivers, with unit ‘km’.

r 1 2 3 4 5 6 7

xr 11.74 18.59 27.88 41.11 58.23 68.50 87.01

Example 3.1. This is a 2-D two-layer model in the bounded region Ω = [0, 100 km]×[0, 50 km]

with a mesh size of ∆x = ∆z = 0.2 km and time step of ∆t = 0.01 s. The Conrad discontinuity

is located at a depth of 20 km from the Earth’s surface, and the wave speed c(x, z) is

c(x, z) =

{
5.2 + 0.05z + 0.2 sin(πx/25), z ≤ 20 km,

6.8 + 0.2 sin(πx/25), z > 20 km.

The unit is ‘km/s’. We randomly set up 7 receivers on the Earth’s surface (z = 0 km). Their

horizontal positions are listed in Table 3.1, see also Fig. 3.1 for the illustration.

Here we consider two different earthquake hypocenters, one is above the Conrad disconti-

Fig. 3.2. Illustration of signal with noise in the two-layer model. The signal with noise dr(t) (blue line)

and the noise-free signal u(ηr, t; ξT , τT ) (red line) for receiver r = 1. The horizontal axis is the time t.

Yellow intervals mean the time window for the quadratic Wasserstein metric, which is not necessary for

the WFR metric. Left: parameters (i) earthquake hypocenter above the Conrad discontinuity; Right:

parameters (ii) earthquake hypocenter below the Conrad discontinuity.
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Fig. 3.3. The optimization objective function of the two-layer model with different metrics in Example

3.1 for cross-section at x = 46.23 km of case (i). The blue pentagram denotes the minimum point of

the optimization objective function, while the red pentagram denotes the real earthquake hypocenter.

nuity and the other is below the Conrad discontinuity:

(i) ξaT = (46.23 km, 7.12 km), τaT = 5.73 s,

(ii) ξbT = (57.60 km, 39.36 km), τ bT = 5.18 s.

The dominant frequency of the earthquake is f0 = 2 Hz, and the amplitude indication parameter

is A = 15000. The real earthquake signals are contaminated with noise

dr(t) = u(ηr, t; ξT , τT ) +Nr(t). (3.13)

Here Nr(t) is subject to the normal distribution with mean µ = 0 and the standard deviation

σ = R×max
t
|u(ηr, t; ξT , τT )| , (3.14)

in which the ratio R = 20%. These signals are illustrated in Fig. 3.2. For the quadratic

Wasserstein metric and the L2 metric, a time window (yellow interval) that contains the main

part of u(ηr, t; ξT , τT ) is determined to reduce the impact of noise. In contrast, there is no
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Fig. 3.4. The optimization objective function of the two-layer model with different metrics in Example

3.1 for cross-section at x = 57.60 km of case (ii). The blue pentagram denotes the minimum point of

the optimization objective function, while the red pentagram denotes the real earthquake hypocenter.

need for the time window under the WFR metric since the impact of noise is less significant.

It implies better robustness for the WFR metric when dealing with noised seismic signals.

We output the cross-section of the optimization objective function defined by the quadratic

Wasserstein (W2) metric, WFR metrics with different γ, and the L2 metric in Figs. 3.3 and 3.4.

It is observed that the optimization objective function based on the L2 metric suffers from the

well-known cycle skipping problem, leading to poor convexity and making it more difficult to

converge to the real earthquake hypocenter. Affected by the noise, there occur deviations of the

minimum point of the optimization objective functions. Table 3.2 presents the offsets between

the minimum point and the real earthquake hypocenter for different metrics. This comparison

means much higher accuracy for the earthquake location based on the WFR metric than the

quadratic Wasserstein metric, even for a wide range of γ.

Next, we test the effects of noise using 100 experiments with white noise. We fix the noise

ratio R at 20% and choose different random seeds. For each experiment, we directly calculate all

possible values of the optimization objective function through a brute force algorithm and arrive

at the optimal point. In each scenario displayed in Figs. 3.5 and 3.6, all 100 optimal solution
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Table 3.2: The two-layer model in Example 3.1: the offset between the minimum point and the real

earthquake hypocenter for the quadratic Wasserstein (W2) metric, WFR metrics with different γ, and

the L2 metric, with unit ‘km’. The bold and underlined numbers are the best and second best results,

respectively.

(i) above the Conrad (ii) below the Conrad

W2 metric 0.8208 1.5898

WFR metric, γ = 8 0.0699 0.2318

γ = 4 0.0945 0.0728

γ = 2 0.1031 0.1685

γ = 1 0.1025 0.0159

γ = 0.5 0.1040 0.0015

γ = 0.25 0.1052 0.0001

γ = 0.125 0.0995 0.0008

L2 metric 0.0629 0.4747

Table 3.3: The two-layer model in Example 3.1: the average (AVE) and maximal (MAX) distance

between the minimum point and the real earthquake hypocenter for 100 tests, with unit ‘km’. We

compare the results of the quadratic Wasserstein (W2) metric, the WFR metric, and the L2 metric.

The bold and underlined numbers are the best and second best results, respectively.

(i) above the Conrad (ii) below the Conrad

AVE MAX AVE MAX

W2 metric 0.5211 2.1596 0.8553 2.5962

WFR metric, γ = 8 0.0792 0.2837 0.2434 0.8137

γ = 4 0.0594 0.2626 0.1579 0.6078

γ = 2 0.0465 0.1842 0.1181 0.3354

γ = 1 0.0390 0.1244 0.0943 0.3050

γ = 0.5 0.0359 0.1173 0.0943 0.2709

γ = 0.25 0.0383 0.1283 0.0686 0.3108

γ = 0.125 0.0369 0.1155 0.0715 0.2770

L2 metric 0.0454 0.1360 0.3785 1.1713

points are presented with the background showing the contour of the noise-free optimization

objective function. The primary purpose of these experiments is to study the location bias in

the statistical sense. The averaged and maximum distances between the optimal solution point

and the real earthquake hypocenter are displayed in Table 3.3. These statistical results indicate

the deviations of minimum points of WFR metrics with different γ are similar and much better

than the quadratic Wasserstein metric. Though the offset for the L2 metric is slightly better

than the W2 metric and even comparable with the WFR metric for shallow earthquakes above

Conrad. However, the global minimum for L2 metric deviates much more than the WFR metric

when the earthquake occurs deeply. These experiment results verify our previous perspective.

Higher accuracy for the earthquake location can be achieved based on the WFR metric. In

addition, the location accuracy is less sensitive to the selection of γ in a certain interval.

The above example illustrates that the WFR metric can be used to obtain more accurate

earthquake location results than the quadratic Wasserstein metric under the same magnitude

of noise. Compared to the L2 metric, both higher location accuracy and better convexity of

the optimization objective function can be guaranteed by the WFR metric. Thus, we believe
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Fig. 3.5. The scattergraph of all the minimum points of the two-layer model with different metrics in

Example 3.1 for cross-section at x = 46.23 km of case (i). The blue triangle denotes each minimum

point, while the red pentagram denotes the real earthquake hypocenter. The background is a contour

plot of the optimization objective function without data noise.

that the WFR metric may offer a better tool for earthquake location problems.

Remark 3.3. For the quadratic Wasserstein metric, the accuracy of the earthquake location

results of noisy data can be improved by selecting the time window carefully, which is just

like we have done in Example 3.1. However, this technique is very sophisticated and requires

extra manual operations. In contrast, the WFR metric can achieve more accurate earthquake

location results robustly.

Remark 3.4. The quadratic Wasserstein metric guarantees global convexity properties. On

the contrary, better local convexity holds for the WFR metric, making it less sensitive to the

data noise. To fully make use of the advantages of the WFR metric and the classical quadratic

Wasserstein metric, we can design a hybrid algorithm. When the initial value and the iterative

values are far from the real solution, we can use the classical quadratic Wasserstein metric or the

WFR metric with a larger interpolating parameter γ. After iterating for a period of time, the

WFR metric with minor interpolating parameter γ is preferred. The comparison in Example

3.1 indicates that the location accuracy is less sensitive to the selection of γ in a certain interval.
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Fig. 3.6. The scattergraph of all the minimum points of the two-layer model with different metrics in

Example 3.1 for cross-section at x = 57.60 km of case (ii). The blue triangle denotes each minimum

point, while the red pentagram denotes the real earthquake hypocenter. The background is a contour

plot of the optimization objective function without data noise.

Thus, in the following numerical experiments in Section 4, the parameter γ is set as 1 at the

initial stage of the iteration and then turn to 0.2 at final iterative steps to avoid confusion.

4. Numerical Experiments

In Section 3, the numerical experiments imply higher accuracy of location with the WFR

metric when seismic signals are contaminated by noise. In this section, we will use this feature

of the WFR metric to the inversion of earthquake hypocenter and origin time. Two numerical

experiments are performed to demonstrate the validity and the advantage of the inversion

method with the WFR metric.

Firstly, we output the convergence trajectories in the absence of noise. For realistic situations

that data is contaminated by noise, the convergence trajectories are output to illustrate the

high accuracy of inversion results.

In the numerical examples, the finite difference schemes [10,22] are used to solve the acoustic

wave equation (2.4). We apply the perfectly matched layer boundary condition [19] inside the

Earth and the reflection boundary condition (2.6) on the Earth’s surface. The point source
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Fig. 4.1. Convergence history of the two-layer model. Up for case (i), and Down for case (ii). Left: the

convergent trajectories; Mid: the absolute errors between the real and computed earthquake hypocenter

with respect to iteration steps; Right: the WFR distance between the real and synthetic earthquake

signals with respect to iteration steps. The magenta square and black pentagram are the initial and the

real hypocenter, respectively. The blue diamond and red circle denote the hypocenter in the iterative

process with different control parameters γ = 1 and γ = 0.2.

δ(x − ξ) is mathematically singular. Thus we follow the idea from [49] to discretize the delta

function by fifth-order piecewise polynomials,

δ(x) =
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Here h is a numerical parameter related to the mesh size.

4.1. The two-layer model

Consider the same parameters set up as in Example 3.1, the velocity model is illustrated in

Figure 3.1. We first study the convergence of this inversion method with the WFR metric under

the ideal situation that there is no noise in the data. We consider the case that the earthquake

occurs above the Conrad discontinuity, with the inversion starting from the initial hypocenter
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Fig. 4.2. Convergence history of the two-layer model with noise data. Up for case (i), and Down for

case (ii). Left: the convergent trajectories; Mid: the absolute errors between the real and computed

earthquake hypocenter with respect to iteration steps; Right: the WFR distance between the real and

synthetic earthquake signals with respect to iteration steps. The magenta square and black pentagram

are the initial and the real hypocenter, respectively. The blue diamond and red circle denote the

hypocenter in the iterative process with different control parameters γ = 1 and γ = 0.2.

below the Conrad discontinuity (i), and its contrary case (ii).

(i) ξT = (46.23 km, 7.12 km), τT = 5.73 s, ξ = (57.60 km, 39.36 km), τ = 5.18 s,

(ii) ξT = (57.60 km, 39.36 km), τT = 5.18 s, ξ = (46.23 km, 7.12 km), τ = 5.73 s.

In Figure 4.1, we can see the convergent trajectories, the absolute errors of the earthquake

hypocenter, and the WFR distance. As discussed in Remark 3.4, we select γ = 1 to ensure

global convexity of the optimization objective function across the interface in the initial stage.

When the optimization objective function becomes steady, e.g., decreases less than 10% in one

iteration after initial three steps, γ is selected to be 0.2 to ensure better local convexity and

non-degeneracy of the optimization objective function near the real earthquake hypocenter and

origin time.

Table 4.1: The two-layer model: the location errors of the iterative solution, with unit ‘km’. We

compare the results of different cases and different metrics.

quadratic Wasserstein metric WFR metric

case (i) 1.28 0.27

case (ii) 1.41 0.41
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Table 4.2: The subduction plate model : the horizontal positions of receivers, with unit ‘km’.

r 1 2 3 4 5 6

xr 24.53 43.79 47.21 49.96 63.42 97.91

r 7 8 9 10 11 12

xr 103.32 120.11 142.92 147.86 166.73 175.35

Remark 4.1. In Fig. 4.1, we can observe that the WFR distance always decreases, but the

error between the real earthquake hypocenter and the hypocenter computed during the iteration

does not keep decreasing. This is because the contour of the WFR distance approximates a

very flat ellipse, see Figs. 3.3 and 3.4 for illustration. However, as the iteration step increases,

the WFR distance and the error decrease on a relatively long scale.

Next, we investigate the resistance to the noise of the new method. As shown in the equations

(3.13)–(3.14) of Example 3.1, real earthquake signals dr(t) are obtained by adding white noise

Nr(t) to the noise-free data u(ηr, t; ξT , τT ). We select a relatively strong noise R = 20%, see

Fig. 3.2 for illustration. The convergent histories are output in Fig. 4.2. In Table 4.1, we

compare the location errors of different cases and different metrics. Based on the discussions in

Example 3.1, we are not surprised that the new earthquake method based on the WFR metric

could obtain higher accuracy of the location results when the data is contaminated with noise.

Moreover, compared with the noise-free experiments, the iteration numbers remain steady even

high-magnitude noise is added to the real signals, which indicates the robustness of this new

inversion method.

4.2. The subduction plate model

Consider a typical seismogenic zone model discussed in [4,5,41,50]. It consists of the crust,

the mantle, and the undulating Moho discontinuity. In addition, there is a subduction zone

with a thin low-velocity layer atop a fast velocity layer in the mantle. The earthquakes may

occur in any of these areas. Taking into account the complex velocity structure, it is much

difficult to locate the earthquake. In the simulating domain Ω = [0, 200 km]× [0, 200 km], the

wave speed is

c(x, z) =



5.5, 0 < z ≤ 33 + 5 sin
πx

40
,

7.8, 33 + 5 sin
πx

40
< z ≤ 45 + 0.4x,

7.488, 45 + 0.4x < z ≤ 60 + 0.4x,

8.268, 60 + 0.4x < z ≤ 85 + 0.4x,

7.8, others,

with unit ‘km/s’. The simulation mesh size is ∆x = ∆z = 0.2 km and time step is ∆t = 0.01 s.

There are 12 randomly distributed receivers ηr = (χr, zr) on the surface zr = 0 km. In table

4.2, we output their horizontal positions. This velocity model is illustrated in Fig. 4.3. The

dominant frequency of the earthquake is f0 = 2 Hz, and the amplitude indication parameter is

A = 15000. Their simulating time interval I = [0, 55 s].

First, consider the ideal situation without noise. We investigate the case when the earth-

quake occurs in the crust, but the initial guess of the earthquake hypocenter is chosen in the

subduction zone. Its contrary case is also taken into account. The parameters are selected as
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Fig. 4.3. Illustration of the subduction plate model. The inverted magenta triangles indicate the

receivers. The red and blue pentagrams indicate the earthquake hypocenter outside and inside the

subduction zone, respectively.

Fig. 4.4. Convergence history of the subduction plate model. Up for case (i), and Down for case (ii).

Left: the convergent trajectories; Mid: the absolute errors between the real and computed earthquake

hypocenter with respect to iteration steps; Right: the WFR distance between the real and synthetic

earthquake signals with respect to iteration steps. The magenta square and black pentagram are the

initial and the real hypocenter, respectively. The blue diamond and red circle denote the hypocenter

in the iterative process with different control parameters γ = 1 and γ = 0.2.

follows:

(i) ξT = (124.69 km, 26.76 km), τT = 5.00 s, ξ = (58.06 km, 88.99 km), τ = 6.79 s,
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Fig. 4.5. Illustration of signal with noise in the subduction model. The signal with noise dr(t) (blue

line) and the noise-free signal u(ηr, t; ξT , τT ) (red line) for receiver r = 5. The horizontal axis is the

time t. Up: parameters (i) earthquake hypocenter inside the subduction zone; Down: parameters (ii)

earthquake hypocenter near the Moho discontinuity.

Fig. 4.6. Convergence history of the subduction plate model with noise data. Up for case (i), and

Down for case (ii). Left: the convergent trajectories; Mid: the absolute errors between the real and

computed earthquake hypocenter with respect to iteration steps; Right: the WFR distance between

the real and synthetic earthquake signals with respect to iteration steps. The magenta square and

black pentagram are the initial and the real hypocenter, respectively. The blue diamond and red circle

denote the hypocenter in the iterative process with different control parameters γ = 1 and γ = 0.2.

(ii) ξT = (58.06 km, 88.99 km), τT = 6.79 s, ξ = (124.69 km, 26.76 km), τ = 5.00 s.

We apply the same γ selection criterion as Section 4.1. The convergent trajectories, absolute

errors of the earthquake hypocenter, and the value of WFR distance are output in Fig. 4.4,

from which we can observe nice convergence property of the new method.

We consider the same parameters (i) and (ii) but in the situation that signals are contami-

nated with noise. The noise is added to the real earthquake signals in the same way as in Section

4.1. In Fig. 4.5, we present the real earthquake signal with noise dr(t) and the noise-free signal

u(ηr, t; ξT , τT ), and in Fig. 4.6 we output the convergent history. In Table 4.3, we compare the
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Table 4.3: The subduction plate model: the location errors of the iterative solution, with unit ‘km’.

We compare the results of different cases and different metrics.

quadratic Wasserstein metric WFR metric

case (i) 1.31 0.34

case (ii) 0.54 0.07

location errors of different cases and different metrics. According to this comparison, we can

also conclude that the location results of the WFR metric are more accurate than that of the

quadratic Wasserstein metric when the data is contaminated with noise.

5. Conclusion

What we have seen from the knowledge and experiments above is that the WFR metric

is a better choice than the classical quadratic Wasserstein metric for the earthquake location

problems. It overcomes the difficulty that the important amplitude information has been ig-

nored by a normalization procedure in the quadratic Wasserstein metric. By introducing the

WFR metric, the retained amplitude information provides more constraints for the earthquake

location problems. This advantage leads to better convexity property and the non-degeneracy

of the optimization objective function near the true source. Thus, this new proposed earth-

quake location model with the WFR metric can achieve more accurate results when the data is

contaminated by strong noise. In the future, we would like to apply this WFR metric to other

seismological inverse problems such as velocity inversion and source-velocity joint inversion.
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