
Journal of Computational Physics 413 (2020) 109453
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

The auxiliary function method for waveform based earthquake 

location

Jing Chen a, Hao Jing b, Ping Tong c,d, Hao Wu a,∗, Dinghui Yang a

a Department of Mathematical Sciences, Tsinghua University, Beijing, 100084, China
b Department of Computer Science and Technology, Tsinghua University, Beijing, 100084, China
c Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
d Asian School of the Environment, Nanyang Technological University, Singapore

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 February 2019
Received in revised form 29 October 2019
Accepted 31 March 2020
Available online 7 April 2020

Keywords:
Computational seismology
Inverse theory
Waveform inversion
Earthquake location

This paper introduces the auxiliary function method, a novel, fast and simple approach for 
waveform based earthquake location. From any initial hypocenter and origin time, we can 
construct the auxiliary function, whose zero set contains the real earthquake hypocenter 
and the origin time. This translates the earthquake location problem into the problem of 
searching the common zeros of the auxiliary functions.
The computational cost of constructing the auxiliary functions is close to the cost of one 
single iteration of the traditional iterative method. And the cost of searching the common 
zeros of the auxiliary functions is almost negligible. Thus, the overall cost of this new 
method is significantly less than that of the iterative methods. Moreover, there is only one 
common zero point of the auxiliary functions in most practical situations. This means that 
the new method only requires one round of calculation to obtain an accurate earthquake 
hypocenter and origin time from arbitrary initial values. According to our numerical tests, 
even for large data noise, the method can still achieve good location results.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

In this work, we present a novel approach to solving the nonlinear optimization problem with PDE constraints [26] to 
determine the real earthquake hypocenter ξ T and the origin time τT

(ξ T , τT ) = argmin
ξ ,τ

∑
r∈R

χr(ξ , τ ), (1.1)

in which χr(ξ , τ ) is the misfit function

χr(ξ , τ ) =
∫ t f

0

∣∣dr(t) − s(ηr, t)
∣∣2 dt

2
∫ t f

0 |dr(t)|2 dt
, (1.2)
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for the r-th receiver. The time-series dr(t) is the real earthquake signal which occurred at (ξ T , τT ) and was recorded at 
receiver r. The simulated time interval is [0, t f ]. Here ηr denotes the location of the r-th receiver. The set R contains all of 
the receivers that we use for inversion. And the synthetic earthquake signal s(x, t) is corresponding to the initial hypocenter 
ξ and the initial origin time τ . For model simplicity, they can be regarded as the solutions

dr(t) = u(ηr, t; ξ T , τT ), s(x, t) = u(x, t; ξ , τ ), (1.3)

of the following acoustic wave equation

∂2u(x, t; ξ , τ )

∂t2
= ∇ ·

(
c2(x)∇u(x, t; ξ , τ )

)
+ f (t − τ )δ(x − ξ), x, ξ ∈ �, (1.4)

with initial-boundary conditions

u(x,0; ξ , τ ) = ∂t u(x,0; ξ , τ ) = 0, x ∈ �, (1.5)

n ·
(

c2(x)∇u(x, t; ξ , τ )
)

= 0, x ∈ ∂�. (1.6)

Here c(x) is the wave speed. The simulated domain � ⊂ Rd , d is the dimension of the problem and n is the unit outer 
normal vector to the boundary ∂�. The point source hypothesis δ(x − ξ) is considered in (1.4) since we investigate the 
situation that the temporal and spatial scales of the seismic wave propagated are large enough compared to the scales of 
seismic rupture [1,15]. The source time function has the form of Ricker wavelet

f (t) = A
(

1 − 2π2 f 2
0 t2

)
e−π2 f 2

0 t2
, (1.7)

in which f0 is the dominant frequency, and A is the normalization factor. Since we focus on the earthquake location problem 
on a large computational domain �, we can simply consider the reflection boundary condition (1.6). The other type of 
boundary conditions, e.g., the perfectly matched layer absorbing boundary condition [11], can be similarly considered here 
without any difficulty.

The equations (1.1)-(1.7) provide a mathematical model to the waveform based earthquake location problem, which is a 
fundamental problem [20] with various applications in seismology [12,18,24]. Traditionally, the earthquake location problem 
is solved within the framework of the ray theory, see for example [5–7,16,19]. However, the earthquake location results are 
not satisfactory since the ray theory is low accuracy when the seismic wavelength is not small enough compared to the scale 
of wave propagation region [4,9,17,27]. Thus, it is necessary to develop the waveform based earthquake location method. 
This direction is becoming more and more popular in recent years [2,8,10,14,22,26,29], together with the fast increase in 
computational power.

In general, the optimization problem (1.1)-(1.4) can be solved by iterative methods [23,26]. This approach requires that 
the initial value should be close enough to the global optimization solution. In particular, due to the highly singular nature 
of the delta function δ(x − ξ) in the wave equation (1.4), the convergence domain could be very small. Although this issue 
has been studied in [26], the convergence domain is still restricted. The other important problem is the computational cost 
of the iterative method. To update the value of hypocenter and origin time, the sensitivity kernel needs to be computed, 
which costs several times wave equation computations. Considering the number of iterations and initial values, the total 
computational cost could be very large. Thus, it is difficult to meet the demand for practical applications, e.g., the real-time 
earthquake location and many earthquakes relocation.

In this study, we would present an accurate and efficient algorithm to solve the difficulty mentioned above. The proposed 
algorithm is based on a set of newly introduced auxiliary functions �r(ζ , ν), r ∈R. We will prove that

�r(ξ T , τT ) = 0, ∀r ∈ R.

This shows that the real earthquake location ξ T and origin time τT is one of the common zeros of the auxiliary functions. 
Thus, the earthquake location problem is translated into the problem of searching the common zeros of the auxiliary func-
tions. The computational cost of searching the common zeros is almost negligible since the value of the auxiliary functions 
has been already obtained during the construction of these auxiliary functions. According to our numerical experiments, 
there is only one common zero point of the auxiliary functions, which reduces the uncertainty of the practical earthquake 
location problems. Moreover, the cost of constructing the auxiliary functions is close to the cost of one single iteration of 
the traditional iterative method. From the above discussion, we can believe the total computational cost of the auxiliary 
function method is much less than that of the traditional iterative methods [14,23,26]. It could be very competitive for 
practical real-time earthquake location problems and many earthquakes relocation problems.

The paper is organized as follows. In Section 2, we prove the main theorem and propose the algorithms. The numerical 
experiments are presented to illustrate the features and highlights of the auxiliary function method in Section 3. In Section 4, 
we make some conclusive remarks.
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2. The auxiliary function method

2.1. The main theorem

We begin this section with the following theorem. In fact, all the discussions in this paper depend on this theorem.

Theorem 1. For any given initial hypocenter ξ and origin time τ , define the auxiliary functions

�r(ζ , ν) = 2χr(ξ , τ ) −
t f∫

0

f (t − ν)wr(ζ , t) − f (t − τ )wr(ξ , t)dt, ∀r ∈ R, (2.1)

in which χr(ξ , τ ) has been given in (1.2), and wr(x, t) satisfies the adjoint equation with terminal-boundary conditions⎧⎪⎪⎨
⎪⎪⎩

∂2 wr(x,t)
∂t2 = ∇ · (c2(x)∇wr(x, t)

) + dr(t)−s(ηr ,t)∫ t f
0 |dr(t)|2dt

δ(x − ηr), x ∈ �,

wr(x, t f ) = ∂ wr(x,t f )

∂t = 0, x ∈ �,

n · (c2(x)∇wr(x, t)
) = 0, x ∈ ∂�.

(2.2)

Then, for real earthquake hypocenter ξ T and origin time τT , we have

�r(ξ T , τT ) = 0, ∀r ∈ R. (2.3)

Proof. Let us first define the difference function

δs(x, t) = u(x, t; ξ T , τT ) − u(x, t; ξ , τ ).

According to (1.3), it follows

δs(ηr, t) = dr(t) − s(ηr, t), ∀r ∈ R.

And the difference function δs(x, t) satisfies the wave equation with initial-boundary conditions⎧⎪⎨
⎪⎩

∂2δs(x,t)
∂t2 = ∇ · (c2(x)∇δs(x, t)

) + f (t − τT )δ(x − ξ T ) − f (t − τ )δ(x − ξ), x ∈ �,

δs(x,0) = ∂δs(x,0)
∂t = 0, x ∈ �,

n · (c2(x)∇δs(x, t)
) = 0, x ∈ ∂�.

(2.4)

Multiply the wave function wr(x, t) given in (2.2), integrate it on � × [0, t f ] and use the integration by parts, we obtain

t f∫
0

∫
�

∂2 wr

∂t2
δsdxdt =

t f∫
0

∫
�

δs∇ · (c2∇wr)dxdt +
t f∫

0

f (t − τT )wr(ξ T , t) − f (t − τ )wr(ξ , t)dt. (2.5)

On the other hand, the misfit function χr(ξ , τ ) in (1.2) can be rewritten as

χr(ξ , τ ) =
∫ t f

0

(
dr(t) − s(ηr, t)

)
δs(ηr, t)dt

2
∫ t f

0 |dr(t)|2 dt
=

∫ t f
0

∫
�

(
dr(t) − s(ηr, t)

)
δs(x, t)δ(x − ηr)dxdt

2
∫ t f

0 |dr(t)|2 dt
. (2.6)

Multiplying both sides of the above equation by 2, and adding equation (2.5), we get

2χr(ξ , τ ) =
t f∫

0

f (t − τT )wr(ξ T , t) − f (t − τ )wr(ξ , t)dt.

This completes the proof. �
According to the theorem, the problem of determining the real earthquake hypocenter ξ T and origin time τT is translated 

into the problem of searching the common zeros of the auxiliary functions

�r(ζ , ν) = 0, ∀r ∈ R. (2.7)

Assume the solution of the above equations is unique, we only need one round of operation, which is constructing the 
auxiliary functions �r(ζ , ν) and searching the common zero of the equation (2.7), to obtain the real earthquake hypocenter 
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ξ T and origin time τT . In the following subsections, we will show that the cost of constructing the auxiliary functions is 
comparable to the cost of an iteration of the traditional method and the cost of searching the common zero is minor. Thus, 
the theorem leads to a highly efficient non-iterative numerical method.

Moreover, this theorem holds for any initial earthquake hypocenter ξ and origin time τ , which overcomes the limitation 
of the traditional iterative methods that the initial earthquake hypocenter ξ and origin time τ should be close enough to 
the real earthquake hypocenter ξ T and origin time τT . In this sense, the obtained numerical method for the earthquake 
location problem has global convergence for the optimization problem (1.1).

Remark 1. In practice, we prefer to solve the equations (2.7) in the least square sense, i.e.

(ξ T , τT ) = argmin
ζ ,ν


(ζ , ν), (2.8)

in which


(ζ , ν) =
∑
r∈R

�2
r (ζ , ν). (2.9)

Remark 2. The theorem does not guarantee the uniqueness of the solution. This may lead to incorrect inversion result. 
Fortunately, more constraints r ∈ R may improve the uniqueness of the solution. According to the numerical experiments, 
we are not suffering from the problem of uniqueness.

Remark 3. For the elastic wave equation, we can obtain similar results as Theorem 1. The theorem and proof can be found 
in the appendix.

2.2. Algorithm

According to the previous theorem and discussions, we present the detailed implementation as follows:

Algorithm 1 (The auxiliary function method).

• Initialization. Given a searching domain �s and a searching time interval Is , we wish that ξ T ∈ �s and τT ∈ Is . Select a 
mesh size h > 0 and a time step σ > 0.

• Discretization. Select a uniform or quasi-uniform grid �h ⊂ �s of mesh size h. Select a uniform or quasi-uniform time 
division Iσ ⊂ Is of time step σ .

• Forward and Backward evolution. Given the initial hypocenter ξ and origin time τ , compute the wave equation 
(1.4)-(1.6) to get

s(ηr, t) = u(ηr, t; ξ , τ ),

and the misfit function χr(ξ , τ ), ∀r ∈ R in (1.2). Next, compute the adjoint wave equations (2.2) to get wr(x, t) for 
r ∈R.

• Construction. Evaluate all the values of the auxiliary functions �r(ζ , ν) on the mesh size ζ ∈ �h , time division ν ∈ Iσ
and r ∈R by using equation (2.1). Thus, 
(ζ , ν) defined in (2.9) on the mesh grid and time division (ζ , ν) ∈ �h × Iσ is 
directly obtained.

• Output. Finally, we can easily obtain the approximated solution of the optimization problem (2.8)

(ξ∗, τ∗) = argmin
ζ∈�h,ν∈Iσ


(ζ , ν),

by direct search. Output (ξ∗, τ∗) and stop. �
The auxiliary function method relies on three components which have not been specified yet, namely, the numerical solve 

of the forward and backward wave equations (1.4), (2.2), the numerical integration for computing the auxiliary function (2.1), 
and the selection of the mesh grid �h and time division Iσ . We will specify these issues in the later part of this paper.

When the algorithm terminates, we have an approximation of the earthquake hypocenter and the origin time, that is 
the numerical solution (ξ∗, τ∗). However, the above approximation does not hold in an extreme situation. This is the case 
where the real earthquake hypocenter and the origin time is not in the searching domain and searching time interval, i.e.,

ξ T /∈ �s or τT /∈ Is.

However, this situation can also be easily avoided. We need to simply enlarge the searching domain �s and searching time 
interval Is . Moreover, the resulting increase in computational cost is minor.
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Remark 4. We further discuss the possibility of the extreme situation

ξ T /∈ �s or τT /∈ Is.

It should be emphasized that the searching domain �s and the searching time interval Is are subsets of the simulated 
domain � and the simulated time interval [0, t f ]:

�s ⊆ �, Is ⊆ [0, t f ].
Obviously, the earthquake hypocenter and the origin time must be in the simulated domain � and the simulated time 
interval [0, t f ],

ξ T ∈ �, τT ∈ [0, t f ],
otherwise, any method will not converge correctly. The computational cost can be saved by selecting a smaller searching 
domain �s and searching time interval Is . However, this choice is based on our prior estimates of the earthquake hypocenter 
and the origin time. We can just consider the situation

�s = �, Is = [0, t f ],
to avoid suffering from the extreme situation. The extra computational cost of this consideration is minor.

We now discuss the computational cost of Algorithm 1, which consists of three parts:

1. The simulation of the wave equation (1.4)-(1.6) and the adjoint wave equations (2.2). It needs to solve the wave equation 
for #R + 1 times. Here #R denotes the number of elements in the set R.

2. The computation of the misfit functions χr(ξ , τ ) in (1.2). It needs to compute the 1-d integral for 2#R times.
3. The computation of the auxiliary functions �r(ζ , ν) in (2.1). It needs to compute the 1-d integral for #R ·(#�h ·#Iσ +1)

times. �
Adding these three parts, the total computational cost is #R + 1 times wave equation computations plus #R · (#�h ·

#Iσ + 3) times 1-d integral calculations. Below, we will illustrate that the cost of #R · (#�h · #Iσ + 3) times 1-d integral 
calculations is comparable to the cost of one-time wave equation computation. Thus, the overall cost of Algorithm 1 is 
comparable to #R + 2 times wave equation computations.

To obtain the misfit functions χr(ξ , τ ) and the auxiliary functions �r(ζ , ν), we need to calculate one dimensional inte-
grals for #R · (#�h · #Iσ + 3) times. However, the support of integrand functions is small. This implies a very small cost 
of 1-d integral computations. Moreover, the mesh size and the time step of the searching domain and the searching time 
interval can be coarser than that of the wave field simulations. Thus, we believe that the total cost of this part is comparable 
to the cost of one-time wave equation computations.

For the iterative method, the overall computational cost is about (#R +1) · Niter · Ninit times wave equation computations. 
Here Niter denotes the average number of iterations for each initial data and Ninit denotes the average number of initial 
data for each problem. In contrast, an accurate approximation of the earthquake hypocenter and origin time can be obtained 
by the auxiliary function method with only one iteration and one initial data. Thus, the auxiliary function method is much 
more efficient. In the later section, we will illustrate this through several numerical experiments.

2.3. The auxiliary function preprocessing method

In order to achieve a high location accuracy in Algorithm 1, the mesh size h and time step σ should be small enough. 
This requires a large computational cost of the Construction step. In extreme cases, the total cost of the auxiliary function 
method may exceed the iterative method. To avoid this situation, we can first get a reasonable approximation of the earth-
quake hypocenter and origin time by using the auxiliary function method. After that, we will take this approximation as the 
initial value of the iterative method to get a more accurate approximation. The sketch of the algorithm is as follows:

Algorithm 2 (The auxiliary function preprocessing method).

• Initialization. Given a searching domain �s and a searching time interval Is .
• Preprocessing. Execute Algorithm 1 on a coarse mesh grid �h ⊂ �s and time division Iσ ⊂ Is to obtain (ξ∗, τ∗).
• Iteration. Execute the iterative method, see e.g. in [2,26], for the inverse problem (1.1)-(1.7) with initial hypocenter and 

origin time (ξ∗, τ∗) to get (ξ A, τA). �
In the above algorithm, the auxiliary function method (Algorithm 1) is used as a preprocessing method to obtain an accu-

rate initial hypocenter and origin time for the iterative. Thus, we refer this algorithm as the auxiliary function preprocessing 
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Fig. 1. Illustration of two-layer velocity model. The red triangles indicate the receivers. (For interpretation of the colors in the figure(s), the reader is referred 
to the web version of this article.)

method. When the above algorithm terminates, we have a more accurate approximation of the earthquake hypocenter and 
origin time, that is (ξ A, τA).

The total computational cost of this algorithm is about

(#R+ 2) + (#R+ 1) · N ′
iter = (#R+ 1) · (N ′

iter + 1
) + 1,

times wave equation computations. Here N ′
iter denotes the average number of iterations of the iterative method. This number 

could be small, since the initial value (ξ∗, τ∗) is very close to the optimization solution (ξ T , τT ). Overall, the auxiliary 
function preprocessing method is still more efficient than the iterative methods.

3. Numerical experiments

In this section, two examples are presented to demonstrate the efficiency and effectiveness of our method. In all the 
numerical examples, the finite difference schemes [3,13,28] are applied to solve the acoustic wave equation (1.4) with the 
initial condition (1.5). On the surface of the earth, we consider the reflection boundary condition (1.6). And the perfectly 
matched layer boundary condition [11] is used for the other boundaries within the earth. The point source δ(x − ξ) is 
numerically discretized as follows [25]:

δh(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
h

(
1 − 5

4

∣∣ x
h

∣∣2 − 35
12

∣∣ x
h

∣∣3 + 21
4

∣∣ x
h

∣∣4 − 25
12

∣∣ x
h

∣∣5
)

, |x| ≤ h,

1
h

(
−4 + 75

4

∣∣ x
h

∣∣ − 245
8

∣∣ x
h

∣∣2 + 545
24

∣∣ x
h

∣∣3 − 63
8

∣∣ x
h

∣∣4 + 25
24

∣∣ x
h

∣∣5
)

, h < |x| ≤ 2h,

1
h

(
18 − 153

4

∣∣ x
h

∣∣ + 255
8

∣∣ x
h

∣∣2 − 313
24

∣∣ x
h

∣∣3 + 21
8

∣∣ x
h

∣∣4 − 5
24

∣∣ x
h

∣∣5
)

, 2h < |x| ≤ 3h,

0, |x| > 3h.

Here h is a numerical parameter which is related to the mesh size.

3.1. The two-layer velocity model

Consider the two-layer model in the bounded domain � = [−10 km, 110 km] × [0 km, 50 km], the wave speed is

c(x, z) =
{

5.2 + 0.05z + 0.2 sin πx
25 , 0 km ≤ z ≤ 20 km,

6.8 + 0.2 sin πx
25 , z > 20 km.

The unit is ‘km/s’. The computational time interval I = [0, 25 s]. The dominant frequency of the earthquakes is f0 = 2 Hz. 
There are 20 equidistant receivers on the surface

ηr = (xr, zr) = (5r − 2.5 km,0), r = 1,2, · · · ,20,

see Fig. 1 for illustration.
First, we test the auxiliary function preprocessing method (Algorithm 2) using 500 experiments. The searching domain 

is �s = [0, 100 km] × [0, 40 km], and the searching time interval is Is = [0, 25 s]. The mesh sizes for the searching grid are 
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Fig. 2. The two-layer velocity model. Left: the spatial distribution of the real earthquake hypocenter ξ i
T ; Middle: the spatial distribution of the initial 

earthquake hypocenter ξ i ; Right: the distance distribution histogram between the real and the initial earthquake hypocenter di .

Table 1
The two-layer velocity model. Convergent results for the auxiliary function prepro-
cessing method (AFPM) and the iterative method (IM).

Correct convergence Diverge Error convergence Total
AFPM 500 0 0 500
IM 117 355 28 500

hx = 0.5 km and hz = 0.4 km. The time step for the searching time interval is σ = 0.1 s. As a comparison, we also compute 
these experiments by the iterative method proposed in [26].

The experiments are designed as follows: the real and initial earthquake hypocenter ξ i
T , ξ i are both uniformly distributed 

over [0, 100 km] × [0, 40 km], the real and initial original time τ i
T , τ i are both uniformly distributed over [5 s, 20 s]. Their 

spatial distribution and the histogram of the distance between the real and the initial hypocenter

di =
∥∥∥ξ i

T − ξ i
∥∥∥

2
,

are presented in Fig. 2.
In the auxiliary function preprocessing method, we randomly select five receivers for inversion, e.g., r = 3, 5, 9, 14, 18. 

In Table 1, we can see the convergent results of the two methods. From which, we can conclude that the auxiliary function 
preprocessing method converges globally here. For the iterative method proposed in [26], only 23.4% experiments converge. 
We have to remark that the range of convergence of the iterative method has been enlarged by several tens of time. In 
contrast, the auxiliary function preprocessing method has an absolute advantage in terms of convergence.

In Fig. 3, we output the histogram of the iterations and the computational time for the two methods. The mean and 
standard deviation of iterations and computational time for the two methods are also presented in Table 2. In particular, 
we present the mean and standard deviation of the time consuming for the preprocessing step and the single iteration step 
of the auxiliary function preprocessing method in Table 3. It is obvious that the time consuming of the preprocessing step 
and the single iteration step are almost the same. Thus, we consider the preprocessing step to be an iteration step. Taking 
account of all the above issues, the total computational cost of the iterative method is about

500

117
× 1523

689
≈ 9.45 times

of the auxiliary function preprocessing method. Thus, we can conclude that the auxiliary function preprocessing method is 
more efficient than the iterative method. This agrees with the theoretical discussions in the previous section.

Next, two examples are specifically presented. The parameters are selected as follows:

(i) ξ T = (90.36 km,35.67 km), τT = 10 s, ξ = (18.23 km,13.13 km), τ = 15.5 s;
(ii) ξ T = (87.252 km,8.842 km), τT = 10 s, ξ = (12.75 km,32.87 km), τ = 17.4 s.
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Fig. 3. The two-layer velocity model. The histogram of the iterations and computational time for the two methods. Up: the histogram of iterations; Down: 
the histogram of computational time; Left: the auxiliary preprocessing method; Right: the iterative method.

Table 2
The two-layer velocity model. The Mean(M) and Standard De-
viation(SD) of iterations and computational time for the aux-
iliary function preprocessing method (AFPM) and the iterative 
method (IM).

Iterations Computational time
M SD M SD

AFPM 3.46 0.61 689 s 132.7 s
IM 8.33 2.35 1523 s 501.0 s

Table 3
The two-layer velocity model. The mean and standard devi-
ation of the time consuming for the preprocessing step and 
the single iteration step of the auxiliary function preprocess-
ing method.

Mean Standard deviation

The preprocessing step 224.9 s 13.2 s
The single iteration step 222.7 s 11.8 s

In Figs. 4–5, we output the cross-sections of the functions 
(ζ , ν) in (2.9), from which we can see the global minimum is 
unique in both cases. The convergent history of the auxiliary preprocessing method is also illustrated in Fig. 6. Here, we 
randomly select five receivers for inversion, e.g., r = 3, 5, 9, 14, 18. We can see that the global minimum of the function 

(ζ , ν) is very close to the optimization solution of (1.1). Thus, when the accuracy requirement is not high, the solution of 
the auxiliary function method is directly applicable. On the other hand, when the accuracy requirement is high, the solution 
of the auxiliary function method can provide excellent initial values for the iterative methods.

At last, we test the influence of the noise. The same parameters (i) and (ii) are selected here. The real earthquake signal 
can be regarded as

dr(t) = u(ηr, t; ξ T , τT ) + Nr(t),

with Nr(t) is subject to the normal distribution with mean μ = 0 and the standard deviation

σ = R × max
t

∣∣u(ηr, t; ξ T , τT )
∣∣ .

Here R denotes the ratio, which will be selected as 10%, 15%, 20%, and 25% respectively. The real earthquake signal with 
noise dr(t) and the noise-free signal u(ηr, t; ξ T , τT ) are illustrated in Fig. 7. In order to reduce the impact of noise, we can 
select a time window that contains the main part of u(ηr, t; ξ T , τT ). In Table 4, the mean and standard deviation of the 
errors between the location results (ξ∗, τ∗) computed via the auxiliary function method (Algorithm 1) and the exact solution 
(ξ T , τT ) are presented. The auxiliary function preprocessing method (Algorithm 2) is not considered here since the iterative 
method may fail even for small ratio R . For each parameter group and ratio R , we test the algorithm with ten different 
noises. We note that all the standard deviations are zero. This implies that all the tests converge to the same solution. They 
are
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Fig. 4. The two-layer velocity model, case (i). The ζx − ζz (Left, ν = 10 s), ν − ζx (Middle, ζz = 35.67 km) and ν − ζz (Right, ζx = 90.36 km) cross-sections of 
the function 
(ζ , ν). Up for large-scale image and Down for zoom-in image.

Fig. 5. The two-layer velocity model, case (ii). The ζx − ζz (Left, ν = 10 s), ν − ζx (Middle, ζz = 8.842 km) and ν − ζz (Right, ζx = 87.252 km) cross section 
plan of function 
(ζ , ν). Up for large-scale image and Down for zoom-in image.

(i) ξ∗ = (90.40 km,35.60 km), τ∗ = 10.01 s;
(ii) ξ∗ = (87.20 km,8.80 km), τ∗ = 9.99 s.

This is because we are using the same mesh grid �h and time division Iσ in the program. It should be noted that the 
numerical results may become better or worse as the mesh grid and time division change. However, the location errors are 
always in the same order of magnitude, which is caused by the noise. We can also observe that the algorithm failed when 
R = 25% in the parameter group (i). But the algorithm works for all the ratios in the parameter group (ii). Thus, we tend to 
believe that the algorithm can achieve success when R below 20% in this example. This is a huge advantage of the auxiliary 
function method over the traditional iterative methods. Accordingly to our numerical tests, the traditional iterative methods 
fail when R reaches 10% and above. Moreover, the computational cost of the auxiliary function method is much less than 
that of the conventional iterative methods.
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Fig. 6. Convergence history of the two-layer velocity model. Up for case (i), and Down for case (ii). Left (large-scale image) and Middle (zoom-in image): the 
convergent trajectories; Right: the absolute errors with respect to iteration steps between the real and computed hypocenter of the earthquake. The black 
star is the initial hypocenter, the magenta circle denotes the hypocenter obtained by auxiliary function method (Algorithm 1), the blue square indicate the 
hypocenters in the iterative process of the auxiliary function preprocessing method (Algorithm 2), and the red pentagram is the real hypocenter.

3.2. The practical velocity model

Let’s consider a more practical model, the computational domain is [0 km, 200 km] ×[0 km, 200 km], and the wave speed 
is

c(x, z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

5.5, 0 < z ≤ 33 + 5 sin πx
40 ,

7.8, 33 + 5 sin πx
40 < z ≤ 45 + 0.4x,

7.488, 45 + 0.4x < z ≤ 60 + 0.4x,
8.268, 60 + 0.4x < z ≤ 85 + 0.4x,
7.8, others,

with unit ‘km/s’. The model consists of the crust, the mantle, and the undulating Moho discontinuity. In the mantle, there 
is a subduction zone with a thin low-velocity layer atop a fast velocity layer [23,26], see Fig. 8 for illustration. This model 
is a typical seismogenic zone [21]. Taking account into the complexity of the velocity structure, it is much more difficult to 
locate the earthquake hypocenter. The computational time interval I = [0, 55 s] and the dominant frequency is f0 = 2 H z. 
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Fig. 7. Illustration of signals with noise in the two-layer velocity model. The signal with noise dr(t) (blue line) and the noise-free signal u(ηr , t; ξ T , τT )

for receivers r = 9. The horizontal axis is the time t . Up: parameters (i); Down: parameters (ii); From left to right, the ratio R = 10%, 15%, 20%, 25%
respectively.

Table 4
The two-layer velocity model. The Mean(M) and Standard Deviation(SD) 
of the errors between the location results (ξ∗, τ∗) and the exact solution 
(ξ T , τT ).

Errors of AFM, case (i) Errors of AFM, case (ii)
R M SD M SD
10% 0.0812 0 0.0676 0
15% 0.0812 0 0.0676 0
20% 0.0812 0 0.0676 0
25% fail 0.0676 0

Table 5
The practical velocity model: the horizontal positions of receivers, with unit ‘km’.

r 1 2 3 4 5 6 7 8 9 10 11 12
xr 21 33 39 58 68 74 86 98 126 132 158 197

Consider 12 randomly distributed receivers ηr = (xr, zr) on the surface zr = 0 km, and their horizontal positions are given 
in Table 5.

We first investigate the noise-free situation. Consider the following four cases: (i) An earthquake occurs in the subduction 
zone, but the initial hypocenter is chosen in the mantle

ξ T = (168.352 km,142.849 km), τT = 10 s,

ξ = (53.494 km,47.113 km), τ = 13.79 s;
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Fig. 8. The practical velocity model. The red triangles indicate the receivers.

(ii) The contrary case of (i)

ξ T = (53.494 km,47.113 km), τT = 10 s,

ξ = (168.352 km,142.849 km), τ = 13.79 s;
(iii) An earthquake occurs in the crust and close to the Moho discontinuity, but the initial hypocenter is chosen in the 
subduction zone

ξ T = (163.326 km,32.877 km), τT = 10 s,

ξ = (26.497 km,69.235 km), τ = 15.32 s;
(iv) The contrary case of (iii)

ξ T = (26.497 km,69.235 km), τT = 10 s,

ξ = (163.326 km,32.877 km), τ = 15.32 s;
The searching domain is �s = [0, 200 km] ×[0, 200 km], and the searching time interval is Is = [τ − 10 s, τ + 10 s]. The mesh 
sizes for the searching grid are hx = 0.2 km and hz = 0.2 km. The time step for the searching time interval is σ = 0.05 s.

The cross-sections of the function 
(ζ , ν) in (2.9) are output in Figs. 9–12. In these figures, it is easy to observe the 
uniqueness of the global minimum. We also present the convergent history of the auxiliary preprocessing method in Fig. 13. 
We can see that the global minimum of the function 
(ζ , ν) is very close to the optimization solution of (1.1). From which, 
we can draw the same conclusion as in Subsection 3.1.

Finally, the noise is taken into consideration. We test the cases (i)-(iv). The noise is added in the same way as in 
Subsection 3.1. The real earthquake signal with noise dr(t) and the noise-free signal u(ηr, t; ξ T , τT ) are illustrated in Fig. 14. 
We also select a time window that contains the main part of u(ηr, t; ξ T , τT ) to reduce the impact of noise. In Fig. 14 (iii), 
two waveforms are observed, where the first is the head wave, and the latter is the direct wave. In Fig. 14 (iv), only one 
waveform is observed. Since the source location is very close to the discontinuity between the low-velocity layer and the 
fast velocity layer in the subduction zone, the direct wave, and the reflected wave arrive almost at the same time. The 
preceding two cases are very typical.

In Tables 6–9, the location results (ξ∗, τ∗) computed via the auxiliary function method (Algorithm 1) and their errors 
with respected to different ratio R are presented. From which, we can see that the method can obtain satisfactory location 
results for R = 10% and 15%. For R = 20%, the auxiliary function method fails to obtain correct results in case (i) and (iii). 
Nevertheless, the auxiliary function method is still much better than the iterative methods, which is only valid for R ≤ 5%
according to our numerical tests. Taking into account that the computational cost of the auxiliary function method is almost 
the same as the single iteration step of the iterative method. The computation efficiency of our method is also obvious.

Remark 5. In the above numerical examples, we can see the critical point of convergence of the auxiliary function method 
is the global minimum of the function 
(ζ , ν) in (2.9) coincides with the location of earthquake hypocenter and origin time. 
However, the global minimum of the function 
(ζ , ν) may deviate under data noise. When the noise intensity is large, the 
global minimum of the function 
(ζ , ν) deviates far from the earthquake hypocenter and origin time, which causes the 
method to fail. This explains the reason why the auxiliary function method fails in case (i) and (iii). However, we have to 
remark that this method is still much better than the iterative method.
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Fig. 9. The practical velocity model, case (i). The ζx − ζz (Left, ν = 10 s), ν − ζx (Middle, ζz = 142.849 km) and ν − ζz (Right, ζx = 168.352 km) cross-sections 
of the function 
(ζ , ν). Up for large-scale image and Down for zoom-in image.

Fig. 10. The practical velocity model, case (ii). The ζx − ζz (Left, ν = 10 s), ν − ζx (Middle, ζz = 47.113 km) and ν − ζz (Right, ζx = 53.494 km) cross-sections 
of the function 
(ζ , ν). Up for large-scale image and Down for zoom-in image.

Table 6
The practical velocity model, case (i). The location results (ξ∗, τ∗) and the errors.

R ξ∗ (km) τ∗ (s)
∥∥ξ T − ξ∗

∥∥
2 (km)

∣∣ξ∗z − ξ T z

∣∣/ξ T z

10% (168.2,142.6) 10.04 0.292 0.17%
15% (168.2,142.2) 10.09 0.667 0.45%

20% fail
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Fig. 11. The practical velocity model, case (iii). The ζx −ζz (Left, ν = 10 s), ν −ζx (Middle, ζz = 32.877 km) and ν −ζz (Right, ζx = 163.326 km) cross-sections 
of the function 
(ζ , ν). Up for large-scale image and Down for zoom-in image.

Fig. 12. The practical velocity model, case (iv). The ζx − ζz (Left, ν = 10 s), ν − ζx (Middle, ζz = 69.235 km) and ν − ζz (Right, ζx = 26.497 km) cross-sections 
of the function 
(ζ , ν). Up for large-scale image and Down for zoom-in image.

Table 7
The practical velocity model, case (ii). The location results (ξ∗, τ∗) and the errors.

R ξ∗ (km) τ∗ (s)
∥∥ξ T − ξ∗

∥∥
2 (km)

∣∣ξ∗z − ξ T z

∣∣/ξ T z

10% (53.4,47.2) 9.99 0.128 0.18%
15% (53.4,47.2) 9.99 0.128 0.18%
20% (53.4,47.2) 9.99 0.128 0.18%
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Fig. 13. Convergence history of the practical velocity model. From Up to Down corresponding the cases (i)-(iv). Left (large-scale image) and Middle (zoom-in 
image): the convergent trajectories; Right: the absolute errors with respect to iteration steps between the real and computed hypocenter of the earthquake. 
The black star is the initial hypocenter, the magenta circle denotes the hypocenter obtained by auxiliary function method (Algorithm 1), the blue square 
indicate the hypocenters in the iterative process of the auxiliary function preprocessing method (Algorithm 2), and the red pentagram is the real hypocenter.
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Fig. 14. Illustration of signal with noise in the practical velocity model. The signal with noise dr(t) (blue line) and the noise-free signal u(ηr , t; ξ T , τT )

for receivers r = 5. The horizontal axis is the time t . From Up to Down corresponding the cases (i)-(iv). From left to right, the ratio R = 10%, 15%, 20%
respectively.
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Table 8
The practical velocity model, case (iii). The location results (ξ∗, τ∗) and the errors.

R ξ∗ (km) τ∗ (s)
∥∥ξ T − ξ∗

∥∥
2 (km)

∣∣ξ∗z − ξ T z

∣∣/ξ T z

10% (163.2,32.6) 10.02 0.304 0.84%
15% (163.2,32.6) 10.02 0.304 0.84%

20% fail

Table 9
The practical velocity model, case (iv). The location results (ξ∗, τ∗) and the errors.

R ξ∗ (km) τ∗ (s)
∥∥ξ T − ξ∗

∥∥
2 (km)

∣∣ξ∗z − ξ T z

∣∣/ξ T z

10% (26.4,69.4) 9.97 0.191 0.24%
15% (26.4,69.4) 9.97 0.191 0.24%
20% (26.4,69.4) 9.97 0.191 0.24%

4. Conclusion and discussion

The first conclusion to be drawn from the numerical evidence presented earlier is that the auxiliary function prepro-
cessing method (Algorithm 2) can determine the earthquake hypocenter and the origin time very efficient and accurate 
when the seismic signals are noise-free. Secondly, the auxiliary function method (Algorithm 1) can locate the earthquake 
hypocenter and the origin time with reasonable accuracy in the situation of noise. The above advantages are based on the 
fact that the real hypocenter and origin time is the root of the new constructed auxiliary functions. Moreover, the total 
computational cost of constructing these functions is comparable to the single iteration step of the iterative method.

It should be noted that there are still many issues need to be further investigated: (a) Currently, the uniqueness of the 
solution cannot be proved, but we have observed the uniqueness of the solution numerically. It is exciting to present an 
intuitive study. (b) We are currently working on the 2-D problem and the accurate velocity model. For 3-D problem and the 
inaccurate velocity model, the situations may be more complicated. These all require much more effort.
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Appendix A

In this appendix, we give the detailed derivation of the auxiliary function method for the elastic wave equation

ρ(x)
∂2u(x, t; ξ , τ )

∂t2
= ∇ · (C : ∇u(x, t; ξ , τ )) + f (t − τ )δ(x − ξ), x, ξ ∈ �, (A.1)

with initial-boundary conditions

n · (C : ∇u(x, t; ξ , τ )) = 0, x ∈ ∂�, (A.2)

u(x,0; ξ , τ ) = ∂t u(x,0; ξ , τ ) = 0, x ∈ �, (A.3)

where ρ(x) is the density, u(x, t; ·, ·) is the displacement vector at time t and location x, f is the force-source vector, and 
C is the fourth-order elastic tensor satisfies the following symmetry conditions:

Cijkl = C jikl = Cijlk = Ckli j.

Similar to the acoustic wave situation, the real earthquake signal dr(t) occurred at (ηT , τT ) and recorded at receiver r, and 
the synthetic earthquake signal s(x, t) corresponding to the initial hypocenter ξ and the initial origin time are regarded as 
the solutions of the elastic wave equation
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dr(t) = u(ηr, t; ξ T , τT ), s(ηr, t) = u(ηr, t; ξ , τ ) (A.4)

The earthquake location problem under the framework of elastic wave equation can also be formulated as (1.1):

(ξ T , τT ) = argmin
ξ ,τ

∑
r∈R

χr(ξ , τ ),

with a slight modification of the misfit function χr(ξ , τ ) at the r-th receiver

χr(ξ , τ ) =
∫ t f

0

∥∥dr(t) − s(ηr, t)
∥∥2

2 dt

2
∫ t f

0 ‖dr(t)‖2
2 dt

. (A.5)

Based on the aforementioned discussions, the traditional iterative methods for the elastic waveform based earthquake lo-
cation problem (1.1) and (A.1)-(A.5) are numerically expensive. Thus, we also propose the following elastic wave version of 
the auxiliary function method.

Theorem 2. For any given initial hypocenter ξ and origin time τ , define the auxiliary functions

�r(ζ , ν) = 2χr(ξ , τ ) −
t f∫

0

wr(ζ , t) · f (t − ν) − wr(ξ , t) · f (t − τ )dt, ∀r ∈ R,

in which χr(ξ , τ ) has been given in (A.5), and wr(x, t) satisfies the adjoint elastic equation with terminal-boundary conditions⎧⎪⎨
⎪⎩

ρ(x)
∂2 wr(x,t)

∂t2 = ∇ · (C : ∇wr(x, t)) + dr(t)−s(ηr ,t)∫ t f
0 ‖dr(t)‖2

2dt
δ(x − ηr), x ∈ �,

n · (C : ∇wr(x, t)) = 0, x ∈ ∂�,

wr(x, t f ) = ∂t wr(x, t f ) = 0, x ∈ �.

(A.6)

Then, for real earthquake hypocenter ξ T and origin time τT , we have

�r(ξ T , τT ) = 0, ∀r ∈ R.

Proof. Let us first define the difference function

δs(x, t) = u(x, t; ξ T , τT ) − u(x, t; ξ , τ ).

According to (A.4), it follows

δs(ηr, t) = dr(t) − s(ηr, t)

And the difference function δs(x, t) satisfies the elastic wave equation with initial-boundary conditions⎧⎨
⎩

ρ(x)
∂2δs(x,t)

∂t2 = ∇ · (C : ∇δs(x, t)) + f (t − τT )δ(x − ξ T ) − f (t − τ )δ(x − ξ), x ∈ �,

n · (C : ∇δs(x, t)) = 0, x ∈ ∂�,

δs(x,0) = ∂tδs(x,0) = 0, x ∈ �.

Multiply the adjoint wave function wr(x, t) given in (A.6) in both sides and integrate them on � × [0, t f ], we obtain

∫
�

t f∫
0

ρ(x)wr(x, t) · ∂2δs(x, t)

∂t2
dtdx =

t f∫
0

∫
�

wr(x, t) · (∇ · (C : ∇δs(x, t)))dxdt

+
t f∫

0

∫
�

wr(x, t) · f (t − τT )δ(x − ξ T )dxdt −
t f∫

0

∫
�

wr(x, t) · f (t − τ )δ(x − ξ)dxdt

By using the integration by parts and the symmetry properties of C , we can obtain

∫
�

t f∫
0

ρ(x)δs(x, t) · ∂2 wr(x, t)

∂t2
dtdx =

∫
�

t f∫
0

δs(x, t) · (∇ · (C : ∇) wr(x, t))dtdx

+
t f∫

0

wr(ξ T , t) · f (t − τT )dt −
t f∫

0

wr(ξ , t) · f (t − τ )dt (A.7)
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On the other hand, the misfit function χr(ξ , τ ) can be rewritten as

χr(ξ , τ ) =
∫ t f

0

(
dr(t) − s(ηr, t)

) · δs(ηr, t)dt

2
∫ t f

0 ‖dr(t)‖2
2 dt

=
∫ t f

0

∫
�

(
dr(t) − s(ηr, t)

) · δs(x, t)δ(x − ηr)dxdt

2
∫ t f

0 ‖dr(t)‖2
2 dt

.

Multiplying both sides of the above equation by 2, and adding equation (A.7), we get

2χr(ξ , τ ) =
t f∫

0

wr(ξ T , t) · f (t − τT ) − wr(ξ , t) · f (t − τ )dt.

This completes the proof. �
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